Advertisement

Journal of Paleolimnology

, Volume 50, Issue 3, pp 275–291 | Cite as

Origin and significance of diagenetic concretions in sediments of Laguna Potrok Aike, southern Argentina

  • A. Vuillemin
  • D. Ariztegui
  • A. S. De Coninck
  • A. Lücke
  • C. Mayr
  • C. J. Schubert
  • The PASADO Scientific Team
Original Paper

Abstract

Authigenic minerals can form in the water column and sediments of lakes, either abiotically or mediated by biological activity. Such minerals have been used as paleosalinity and paleoproductivity indicators and reflect trophic state and early diagenetic conditions. They are also considered potential indicators of past and perhaps ongoing microbial activity within sediments. Authigenic concretions, including vivianite, were described in late glacial sediments of Laguna Potrok Aike, a maar lake in southernmost Argentina. Occurrence of iron phosphate implies specific phosphorus sorption behavior and a reducing environment, with methane present. Because organic matter content in these sediments was generally low during glacial times, there must have been alternative sources of phosphorus and biogenic methane. Identifying these sources can help define past trophic state of the lake and diagenetic processes in the sediments. We used scanning electron microscopy, phosphorus speciation in bulk sediment, pore water analyses, in situ ATP measurements, microbial cell counts, and measurements of methane content and its carbon isotope composition (δ13CCH4) to identify components of and processes in the sediment. The multiple approaches indicated that volcanic materials in the catchment are important suppliers of iron, sulfur and phosphorus. These elements influence primary productivity and play a role in microbial metabolism during early diagenesis. Authigenic processes led to the formation of pyrite framboids and revealed sulfate reduction. Anaerobic oxidation of methane and shifts in pore water ion concentration indicated microbial influence with depth. This study documents the presence of active microbes within the sediments and their relationship to changing environmental conditions. It also illustrates the substantial role played by microbes in the formation of Laguna Potrok Aike concretions. Thus, authigenic minerals can be used as biosignatures in these late Pleistocene maar sediments.

Keywords

Authigenic minerals Microbial reduction Methanogenesis Vivianite Framboids ICDP-project PASADO 

Notes

Acknowledgments

Funding for this study was provided by ICDP; Swiss National Science Foundation (Grant 200020-119931/2 to D. Ariztegui) and University of Geneva, Switzerland; University of Bremen and Deutsche Forschungsgemeinschaft, Germany; Natural Sciences and Engineering Research Council of Canada; University of Buenos Aires and Secretaria de Ciencia y Tecnologia of Cordoba, Argentina; and the Vetenskapsrädet of Sweden, and Eawag. P. Arpagaus and S. Becker are kindly acknowledged for the phosphorus speciation analyses and the ICP-MS pore water results, respectively. W. Klöti is acknowledged for processing with methane headspace analyses and G. Nobbe for doing the carbon isotopes on methane. We also thank A. Lisé-Pronovost for providing the picture in Fig. 2B and for first describing the presence of vivianite in the Laguna Potrok Aike sediments. We kindly acknowledge the comments and suggestions of two reviewers on an earlier version of the manuscript, and M. Brenner for his help in editing the present paper.

Supplementary material

10933_2013_9723_MOESM1_ESM.jpg (20.8 mb)
Supplementary material 1 (JPEG 21268 kb)
10933_2013_9723_MOESM2_ESM.jpg (3.5 mb)
Supplementary material 2 (JPEG 3626 kb)

References

  1. Anderson LD, Delaney ML, Faul KL (2001) Carbon to phosphorus ratios in sediments: implications for nutrient cycling. Glob Biogeochem Cycles 15:65–79CrossRefGoogle Scholar
  2. Anselmetti FS, Ariztegui D, De Batist M, Gebhardt AC, Haberzettl T, Niessen F, Ohlendorf C, Zolitschka B (2009) Environmental history of southern Patagonia unraveled by the seismic stratigraphy of Laguna Potrok Aike. Sedimentology 56:873–892CrossRefGoogle Scholar
  3. Ariztegui D, Dobson J (1996) Magnetic investigations of framboidal greigite formation: a record of anthropogenic environmental changes in eutrophic Lake St Moritz, Switzerland. Holocene 6:235–241CrossRefGoogle Scholar
  4. Astafieva MM, Rozanov AY, Hoover R (2005) Framboids: their structure and origin. Paleontol Zh 39:457–464Google Scholar
  5. Berner RA (1981) Authigenic mineral formation resulting from organic matter decomposition in modern sediments. Fortschr Miner 59:117–135Google Scholar
  6. Beveridge TJ, Meloche JD, Fyfe WS, Murray RGE (1983) Diagenesis of metals chemically complexed to bacteria: laboratory formation of metal phosphates, sulfides, and organic condensates in artificial sediments. Appl Environ Microbiol 45:1094–1108Google Scholar
  7. Böttcher ME, Lepland A (2000) Biogeochemistry of sulfur in a sediment core from the west-central Baltic Sea: evidence from stable isotopes and pyrite textures. J Mar Syst 25:299–312CrossRefGoogle Scholar
  8. Compton J, Mallinson D, Glenn CR, Filippelli G, Föllmi K, Shields G, Zanin Y (2007) Variations in the global phosphorus cycle. SEPM Special Publ 66(66):21–33Google Scholar
  9. Dong H, Jaisi DP, Kim J, Zhang G (2009) Microbe-clay mineral interactions. Am Miner 94:1505–1519CrossRefGoogle Scholar
  10. Emerson S (1976) Early diagenesis in anaerobic lake sediments: chemical equilibria in interstitial waters. Geochim Cosmochim Acta 40:925–934CrossRefGoogle Scholar
  11. Fagel N, Alleman LY, Granina L, Hatert F, Thamo-Bozso E, Cloots R, André L (2005) Vivianite formation and distribution in Lake Baikal sediments. Glob Planet Change 46:315–336CrossRefGoogle Scholar
  12. Fredrickson JK, Zachara JM, Kennedy DW, Dong H, Onstott TC, Hinman NW, Li S-M (1998) Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochim Cosmochim Acta 62:3239–3257CrossRefGoogle Scholar
  13. Gächter R, Meyer JS, Mares A (1988) Contribution of bacteria to release and fixation of phosphorus in lake sediments. Limnol Oceanogr 33:1542–1558CrossRefGoogle Scholar
  14. Gebhardt AC, De Batist M, Niessen F, Anselmetti FS, Ariztegui D, Haberzettl T, Kopsch C, Ohlendorf C, Zolitschka B (2011) Deciphering lake and maar geometries from seismic refraction and reflection surveys in Laguna Potrok Aike (southern Patagonia, Argentina). J Volcanol Geotherm Res 201:357–363CrossRefGoogle Scholar
  15. Glasauer S, Weidler PG, Langley S, Beveridge TJ (2003) Controls of Fe reduction and mineral formation by a subsurface bacterium. Geochim Cosmochim Acta 67:1277–1288CrossRefGoogle Scholar
  16. Haberzettl T, Corbella H, Fey M, Janssen S, Lücke A, Mayr C, Ohlendorf C, Schäbitz F, Schleser GH, Wille M, Wulf S, Zolitschka B (2007) Lateglacial and Holocene wet-dry cycles in southern Patagonia: chronology and geochemistry of a lacustrine record from Laguna Potrok Aike, Argentina. Holocene 17:297–310CrossRefGoogle Scholar
  17. Hoehler TM, Alperin MJ, Albert DB, Martens CS (2001) Apparent minimum free energy requirements for methanogenic Archaea and sulfate-reducing bacteria in an anoxic marine sediment. FEMS Microbiol Ecol 38:33–41CrossRefGoogle Scholar
  18. Holmer M, Storkholm P (2001) Sulphate reduction and sulphur cycling in lake sediments: a review. Freshw Biol 46:431–451CrossRefGoogle Scholar
  19. Hupfer M, Fischer P, Friese K (1998) Phosphorus retention mechanisms in the sediment of an eutrophic mining lake. Water Air Soil Pollut 108:341–352CrossRefGoogle Scholar
  20. Kliem P, Enters D, Hahn A, Ohlendorf C, Lisé-Pronovost A, St-Onge G, Wastegård S, Zolitschka B and the PASADO science team (2012) Lithology, radiocarbon chronology and sedimentological interpretation of the lacustrine record from Laguna Potrok Aike, southern Patagonia. Q Sci Rev. PASADO special issue, available online August 2012. doi: 10.1016/j.quascirev.2012.07.019
  21. Konhauser K (2007) Introduction to geomicrobiology. Blackwell Science Ltd, OxfordGoogle Scholar
  22. Kostka JE, Wu J, Nealson KH, Stucki JW (1999) The impact of structural Fe(III) reduction by bacteria on the surface chemistry of smectite clay minerals. Geochim Cosmochim Acta 63:3705–3713CrossRefGoogle Scholar
  23. Li Y-L, Vali H, Sears SK, Yang J, Deng B, Zhang CL (2004) Iron reduction and alteration of nontronite NAu-2 by sulfate-reducing bacterium. Geochim Cosmochim Acta 68:3251–3260CrossRefGoogle Scholar
  24. Lovley DR (1997) Microbial Fe(III) reduction in subsurface environments. FEMS Microbiol Rev 20:305–313CrossRefGoogle Scholar
  25. MacLean LCW, Tyliszczak T, Gilbert PUPA, Zhou D, Pray TJ, Onstott TC, Southam G (2008) A high-resolution chemical and structural study of framboidal pyrite formed within a low-temperature bacterial biofilm. Geobiology 6:471–480CrossRefGoogle Scholar
  26. Manning PG, Prepas EE, Serediak MS (1999) Pyrite and vivianite in the bottom sediments of eutrophic Baptiste Lake, Alberta, Canada. Can Miner 37:593–601Google Scholar
  27. Mayr C, Lücke A, Maidana NI, Wille M, Haberzettl T, Corbella H, Ohlendorf C, Schäbitz F, Fey M, Janssen S, Zolitschka B (2009) Isotopic fingerprints on lacustrine organic matter from Laguna Potrok Aike (southern Patagonia, Argentina) reflect environmental changes during the last 16,000 years. J Paleolimnol 42:81–102CrossRefGoogle Scholar
  28. Nauhaus K, Boetius A, Krüger M, Widdel F (2002) In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ Microbiol 4(5):296–305CrossRefGoogle Scholar
  29. Nealson KH, Stahl DA (1997) Microorganisms and biogeochemical cycles: what can we learn from layered microbial communities? Rev Miner 35:5–34Google Scholar
  30. Nriagu JO (1972) Stability of vivianite and ion-pair formation in the system Fe3(PO4)2-H3PO4-H2O. Geochim Cosmochim Acta 26:459–470CrossRefGoogle Scholar
  31. Nriagu JO, Dell CI (1974) Diagenetic formation of iron phosphates in recent lake sediments. Am Miner 59:934–946Google Scholar
  32. Nuttin L, Francus P, Preda M, Ghaleb B, Hillaire-Marcel C (2012) Authigenic, detrital and diagenetic minerals in the Laguna Potrok Aike sedimentary sequence. Q Sci Rev. PASADO special issue, available online December 2012. doi: 10.1016/j.quascirev.2012.09.027
  33. Oehlerich M, Mayr C, Griesshaber E, Lücke A, Oeckler OM, Ohlendorf C, Schmahl WW, Zolitschka B (2012) Ikaite precipitation in a lacustrine environment—implications for paleoclimatic studies using carbonates from Laguna Potrok Aike (Patagonia, Argentina). Q Sci Rev. PASADO special issue, available online June 2012. doi: 10.1016/j.quascirev.2012.05.024
  34. Ohfuji H, Rickard D (2005) Experimental syntheses of framboids—a review. Earth-Sci Rev 71:147–170CrossRefGoogle Scholar
  35. Ohlendorf C, Fey M, Gebhardt C, Haberzettl T, Lücke A, Mayr C, Schäbitz F, Wille M, Zolitschka B (2012) Mechanisms of lake-level change at Laguna Potrok Aike (Argentina)—insights from hydrological balance calculations. Q Sci Rev. PASADO special issue, available online November 2012. doi: 10.1016/j.quascirev.2012.10.040
  36. Park MH, Kim JH, Ryu BJ, Yu KM (2005) Tephrostratigraphy and paleo-environmental implications of Late Quaternary sediments and interstitial water in the western Ulleung Basin, East/Japan Sea. Geo-Mar Lett 25:54–62CrossRefGoogle Scholar
  37. Postma D (1981) Formation of siderite and vivianite and the pore-water composition of a recent bog sediment in Denmark. Chem Geol 31:225–244CrossRefGoogle Scholar
  38. Recasens C, Ariztegui D, Gebhardt AC, Gogorza C, Haberzettl T, Hahn A, Kliem P, Lisé-Pronovost A, Lücke A, Maidana N, Mayr C, Ohlendorf C, Schäbitz F, St-Onge G, Wille M, Zolitschka B, The PASADO Science Team (2012) New insights into paleoenvironmental changes in Laguna Potrok Aike, Southern Patagonia, since the Late Pleistocene: the PASADO multiproxy record. Holocene 22:1323–1335CrossRefGoogle Scholar
  39. Ross P-S, Delpit S, Haller MJ, Németh K, Corbella H (2011) Influence of the substrate on maar-diatreme volcanoes—an example of a mixed setting from the Pali Aike volcanic field, Argentina. J Volcanol Geotherm Res 201:253–271CrossRefGoogle Scholar
  40. Sapota T, Aldahan A, Al-Aasm IS (2006) Sedimentary facies and climate control of formation of vivianite and siderite microconcretions in sediments of Lake Baikal, Siberia. J Paleolimnol 36:245–257CrossRefGoogle Scholar
  41. Schieber J (2002) Sedimentary pyrite: a window into the microbial past. Geology 30:531–534CrossRefGoogle Scholar
  42. Schink B (2002) Synergistic interactions in the microbial world. Antonie Van Leeuwenhoek 81:257–261CrossRefGoogle Scholar
  43. Schubert CJ, Vazquez F, Lösekann-Behrens T, Knittel K, Tonolla M, Boetius A (2011) Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno). FEMS Microbiol Ecol 76:26–38CrossRefGoogle Scholar
  44. Smith EM, Prairie YT (2004) Bacterial metabolism and growth efficiency in lakes: the importance of phosphorus availability. Limnol Oceanogr 49:137–147CrossRefGoogle Scholar
  45. Stamatakis MG, Koukouzas NK (2001) The occurrence of phosphate minerals in lacustrine clayey diatomite deposits, Thessaly, Central Greece. Sediment Geol 139:33–47CrossRefGoogle Scholar
  46. Stucki JW, Kostka JE (2006) Microbial reduction of iron in smectite. C. R. Geosci 338:468–475CrossRefGoogle Scholar
  47. Suits NS, Wilkin RT (1998) Pyrite formation in the water column and sediments of a meromictic lake. Geology 26:1099–1102CrossRefGoogle Scholar
  48. Valentine DL (2002) Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review. Antonie Van Leeuwenhoek 81:271–282CrossRefGoogle Scholar
  49. Vuillemin A, Ariztegui A and the PASADO Scientific Team (2012) Geomicrobiological investigations of lake sediments over the last 1500 years. Q Sci Rev. PASADO special issue, available online May 2012, doi: 10.1016/j.quascirev.2012.04.011
  50. Wang S, Jin X, Zhao H, Zhou X, Wu F (2007) Effect of organic matter on the sorption of dissolved organic and inorganic phosphorus in lake sediments. Colloid Surface A 297:154–162CrossRefGoogle Scholar
  51. Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314CrossRefGoogle Scholar
  52. Wilkin RT, Arthur MA (2001) Variations in pyrite texture, sulfur isotope composition, and iron systematics in the Black Sea: evidence for Late Pleistocene to Holocene excursions of the O2-H2S redox transition. Geochim Cosmochim Acta 65:1399–1416CrossRefGoogle Scholar
  53. Wilkin RT, Barnes HL (1997) Formation processes of framboidal pyrite. Geochim Cosmochim Acta 61:323–339CrossRefGoogle Scholar
  54. Wilkin RT, Barnes HL, Brantley SL (1996) The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochim Cosmochim Acta 60:3897–3912CrossRefGoogle Scholar
  55. Wilson TA, Amirbahman A, Norton SA, Voytek MA (2010) A record of phosphorus dynamics in oligotrophic lake sediment. J Paleolimnol 44:279–294CrossRefGoogle Scholar
  56. Zachara JM, Fredrickson JK, Li SM, Kennedy DW, Smith SC, Gassman PL (1998) Bacterial reduction of crystalline Fe3+ oxides in single phase suspensions and subsurface materials. Am Miner 83:1426–1443Google Scholar
  57. Zelibor JL, Senftle FE, Reinhardt JL (1988) A proposed mechanism for the formation of spherical vivianite crystal aggregates in sediments. Sediment Geol 59:125–142CrossRefGoogle Scholar
  58. Zhang J, Dong H, Liu D, Fischer TB, Wang S, Huang L (2012) Microbial reduction of Fe(III) in illite-smectite minerals by methanogen Methanosarcina mazei. Chem Geol 292–293:35–44CrossRefGoogle Scholar
  59. Zhou Q, Gibson C, Zhu Y (2001) Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in China and the UK. Chemosphere 42:221–225CrossRefGoogle Scholar
  60. Zolitschka B, Schäbitz F, Lücke A, Corbella H, Ercolano B, Fey M, Haberzettl T, Janssen S, Maidana N, Mayr C, Ohlendorf C, Oliva G, Paez MM, Schleser GH, Soto J, Tiberi P, Wille M (2006) Crater lakes of the Pali Aike Volcanic Field as key sites for paleoclimatic and paleoecological reconstructions in southern Patagonia, Argentina. J S Am Earth Sci 21:294–309CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • A. Vuillemin
    • 1
  • D. Ariztegui
    • 1
  • A. S. De Coninck
    • 2
  • A. Lücke
    • 3
  • C. Mayr
    • 4
    • 5
  • C. J. Schubert
    • 6
  • The PASADO Scientific Team
  1. 1.Section of Earth and Environmental SciencesUniversity of GenevaGenevaSwitzerland
  2. 2.Water Earth Environment CenterNational Institute of Scientific ResearchQuebecCanada
  3. 3.Institute of Bio- and Geosciences IBG- 3: AgrosphereResearch Center JülichJülichGermany
  4. 4.Institute of GeographyUniversity of Erlangen-NürnbergErlangenGermany
  5. 5.Geobio-Center and Department of Earth and Environmental SciencesUniversity of MunichMunichGermany
  6. 6.Department of Surface Waters-Research and ManagementEawag, Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland

Personalised recommendations