Skip to main content
Log in

Assessing the performance of a diatom transfer function on four Minnesota lake sediment cores: effects of training set size and sample age

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Paleolimnological information is often extracted from diatom records using weighted averaging calibration and regression techniques. Larger calibration sample sets yield better inferences because they better characterize the environmental characteristics and species assemblages of the sample region. To optimize inferred information from fossil assemblages, however, it is worth knowing if fewer calibration samples can be used. Furthermore, confidence in environmental reconstructions is greater if we consider the relative importance of (A) similarity between fossil and calibration assemblages and (B) how well fossil taxa respond to the environmental variable of interest. We examine these issues using ~200-year sediment profiles from four Minnesota lakes and a 145-lake surface sediment training set calibrated for total phosphorus (TP). Training set sample sizes ranging from 10 to 145 were created through random sample selection, and models based on these training sets were used to calculate diatom-inferred (DI) TP data from fossil samples. Relationships between DI-TP variability and sample size were used to determine the minimum sample size needed to optimize the model for paleo-reconstruction. Similarly, similarities between fossil and modern assemblages were calculated for each size training set. Finally, fossil and modern assemblages were compared to determine whether older fossil samples had poorer similarity with modern analogs. More than 50–80 samples, depending on lake, were needed to stabilize variability in DI-TP results, and >110 training set samples were needed to minimize modern-fossil assemblage dissimilarities. Dissimilarities appeared to increase with sample age, but only one of the four studied cores displayed a significant trend. We have two recommendations for future studies: (1) be cautious when dealing with smaller training sets, especially if they are used to interpret older fossil assemblages and (2) understand how well fossil taxa are attuned to the variable of interest, as it is critical to evaluating the quality of the diatom-inferred data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agbeti MD (1992) The relationship between diatom assemblages and trophic variables: a comparison of old and new approaches. Can J Fish Aquat Sci 49:1171–1175

    Article  Google Scholar 

  • Anderson NJ (1989) A whole-basin diatom accumulation rate for a small eutrophic lake in Northern-Ireland and its paleoecological implications. J Ecol 77:926–946

    Article  Google Scholar 

  • Appleby PG, Oldfield F (1978) The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5:1–8

    Article  Google Scholar 

  • Battarbee RW (1986) Diatom analysis. In: Berglund BE (ed) Handbook of Holocene Paleoecology and Paleohydrology. Wiley, Chichester, pp 527–570

    Google Scholar 

  • Battarbee R, Jones VJ, Flower RJ, Cameron NG, Bennion H, Carvalho L, Juggins S (2001) Diatoms. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments—volume 3: terrestrial, algal, and siliceous indicators. Kluwer, Dordrecht, pp 155–202

    Google Scholar 

  • Binford MW (1990) Calculation and uncertainty analysis of 210Pb dates for PIRLA project lake sediment cores. J Paleolimnol 3:253–267

    Article  Google Scholar 

  • Birks HJB (2010) Numerical methods for the analysis of diatom assemblage data. In: Smol JP, Stoermer EF (eds) The diatoms: applications for the environmental and earth sciences, 2nd edn. Cambridge University Press, Cambridge, pp 23–54

    Chapter  Google Scholar 

  • Birks HJB, Juggins S, Line JM (1990a) Lake surface-water chemistry reconstructions from palaeolimnological data. In: Mason BJ (ed) The surface water acidification program. Cambridge University Press, Cambridge, pp 301–313

    Google Scholar 

  • Birks HJB, Line JM, Juggins S, Stevenson AC, ter Braak CJF (1990b) Diatoms and pH reconstruction. Philos Trans Royal Soc Lond B Biol Sci 327:263–278

    Article  Google Scholar 

  • Bradbury JP, Bezrukova YV, Chernyaeva GP, Colman SM, Khursevich G, King JW, Likoshway YV (1994) A synthesis of post-glacial diatom records from Lake Baikal. J Paleolimnol 10:213–252

    Article  Google Scholar 

  • Bray JR, Curtis JT (1957) An ordination of upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349

    Article  Google Scholar 

  • Camburn KE, Charles DF (2000) Diatoms of low-alkalinity lakes in the northeastern United States. Acad Nat Sci Phila Special Publ 18:152

    Google Scholar 

  • Camburn KE, Kingston JC, Charles DF (1984–1986) PIRLA diatom iconograph. PIRLA Unpublished Report Series, Report 3—Electric Power Research Institute, Palo Alto, California

  • Cumming BF, Wilson SE, Hall RI, Smol JP (1995) Diatoms from British Columbia (Canada) lakes and their relationship to salinity, nutrients and other limnological variables. Bibliotheca Diatomologica 31:1–207

    Google Scholar 

  • Dixit SS, Smol JP (1994) Diatoms as indicators in the environmental monitoring and assessment program-surface waters (EMAP-SW). Environ Monit Assess 31:275–307

    Google Scholar 

  • Dixit SS, Smol JP, Kingston JC, Charles DF (1992) Diatoms: powerful indicators of environmental change. Environ Sci Technol 26:23–33

    Article  Google Scholar 

  • Eakins JD, Morrison RT (1978) A new procedure for the determination of lead-210 in lake and marine sediments. Int J Appl Radiat Isot 29:531–536

    Article  Google Scholar 

  • Edlund MB (2005) Using diatom-based analysis of aediment records from central Minnesota lakes for TMDL and nutrient criteria development. Final report to Minnesota Pollution Control Agency, CFMS Contract no A45276, Amendment 1, p 25

  • Edlund MB, Kingston JC (2004) Expanding sediment diatom reconstruction model to eutrophic southern Minnesota lakes Final report to Minnesota Pollution Control Agency, p 33

  • Engstrom D, Thommes K, Balogh S, Swain E, Post H (1999) Trends in mercury deposition across Minnesota: evidence from dated sediment cores from 50 Minnesota lakes. Final report to Legislative Commission on Minnesota Resources

  • Fallu M-A, Allaire N, Peinitz R (2000) Freshwater diatoms from northern Québec and Labrador (Canada). Species-environment relationships in lakes of boreal forest, forest-tundra and tundra regions. Bibliotheca Diatomologica 45:1–200

    Google Scholar 

  • Flower RJ, Juggins S, Battarbee RW (1997) Matching diatom assemblages in lake sediment cores and modern surface sediment samples: the implications for lake conservation and restoration with special reference to acidified systems. Hydrobiologia 344:27–40

    Article  Google Scholar 

  • Forrest F, Reavie ED, Smol JP (2002) Comparing the trophic impacts of canal construction to other catchment disturbances in four lakes within the Rideau Canal system, Ontario, Canada. J Limnol 61:183–197

    Article  Google Scholar 

  • Fritz SC, Juggins S, Battarbee RW, Engstrom DR (1991) Reconstruction of past changes in salinity and climate using a diatom-based transfer function. Nature 352:706–708

    Article  Google Scholar 

  • Hall RI, Smol JP (1992) A weighted-averaging regression and calibration model for inferring total phosphorus concentration from diatoms in British Columbia (Canada) lakes. Freshw Biol 27:417–434

    Article  Google Scholar 

  • Hausmann S, Kienast F (2006) A diatom-inference model for nutrients screened to reduce the influence of background variables: application to varved sediments of Greifensee and evaluation with measured data. Palaeogeogr Palaeoclimatol Palaeoecol 233:96–112

    Article  Google Scholar 

  • Heiskary SA, Swain EB (2002) Water quality reconstruction from fossil diatoms: applications for trend assessment, model verification, and development of nutrient criteria for lakes in Minnesota, USA. Minnesota Pollution Control Agency, Environmental Outcomes Division, St Paul, Minnesota, p 103

  • Hübener T, Dreßler M, Schwarz A, Langner K, Adler S (2008) Dynamic adjustment of training sets (‘moving-window’ reconstruction) by using transfer functions in paleolimnology—a new approach. J Paleolimnol 40:79–95

    Article  Google Scholar 

  • Hustedt F (1927–1966) Die Kieselalgen Deutschlands, Österreichs und der Schweiz mit Berücksichtigung der übrigen Länder Europas sowie der angrenzenden Meeresgebeite In Dr L Rabenhorst’s Kryptogramen-Flora von Deutschland, Österreich und der Schweiz Band VII Teil 1: Lieferung 1, seite 1-272, 1927: Lieferung 2, seite 273-464, 1928: Lieferung 3, seite 465-608, 1929: Lieferung 4, seite 609-784, 1930: Lieferung 5, seite 785-920, 1930: Teil 2: Lieferung 1, seite 1-176, 1931: Lieferung 2, seite 177-320, 1932: Lieferung 3, seite 321-432, 1933: Lieferung 4, seite 433-576, 1933: Lieferung 5, seite 577-736, 1937: Lieferung 6, seite 737-845, 1959: Teil 3: Lieferung 1, seite 1-160, 1961: Lieferung 2, seite 161-348, 1962: Lieferung 3, seite 349-556, 1964: Lieferung 4, seite 557-816, 1966 Leipzig, Akademische Verlagsgesellschaft Geest und Portig K-G

  • Juggins S (2009) Rioja: analysis of quaternary science data, R package version 0.5-6. URL http://cran.r-project.org/package=rioja

  • Kingston JC, Engstrom DR, Norton AR, Peterson MR, Griese NA, Stoermer EF, Andresen NA (2004) Paleolimnological inference of nutrient loading in a eutrophic lake in north-central Minnesota (USA) and periodic occurrence of abnormal Stephanodiscus niagarae. In: Poulin M (ed) Proc XVIIth Int Diatom Symp, Biopress Ltd, Bristol, pp 187–202

  • Krammer K, Lange-Bertalot H (1986) Bacillariophyceae 1 Teil: Naviculaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasser flora von Mitteleuropa, Band 2/1. Gustav Fischer Verlag, Stuttgart, p 876

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1988) Bacillariophyceae 2 Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, Band 2/2 VEB. Gustav Fischer Verlag, Jena, p 596

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1991a) Bacillariophyceae 3 Teil: Centrales, Fragilariaceae, Eunotiaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, Band 2/3. Gustav Fischer Verlag, Stuttgart, p 576

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1991b) Bacillariophyceae 4 Teil: Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema, Gesamtliteraturverzeichnis Teil 1–4. In: Ettl H, Gärtner G, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, Band 2/4. Gustav Fischer Verlag, Stuttgart, p 437

    Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2011) vegan: Community Ecology Package, R package version 20-1, URL http://cran.r-project.org/package=vegan

  • Patrick R, Reimer CW (1966) The diatoms of the United States, exclusive of Alaska and Hawaii, vol 1, Fragilariaceae, Eunotiaceae, Achnanthaceae, Naviculaceae. Academy of Natural Sciences of Philadelphia Monograph No 13, p 688

  • Patrick R, Reimer CW (1975) The diatoms of the United States, exclusive of Alaska and Hawaii, volume 2, Part 1-Entomoneidaceae, Cymbellaceae, Gomphonemaceae, Epithemaceae. Academy of Natural Sciences of Philadelphia Monograph No 13, p 213

  • Pienitz R, Smol JP, MacDonald GM (1999) Paleolimnological reconstruction of Holocene climatic trends from two boreal treeline lakes, Northwest Territories, Canada. Arct Antarct Alp Res 31:82–93

    Article  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, URL http://www.R-project.org

  • Racca JMJ, Wild M, Birks HJB, Prairie YT (2003) Separating wheat from chaff: diatom taxon selection using an artificial neural network pruning algorithm. J Paleolimnol 29:123–133

    Article  Google Scholar 

  • Ramstack JM, Fritz SC, Engstrom DR, Heiskary SA (2003) The application of a diatom-based transfer function to evaluate regional water-quality trends in Minnesota since 1970. J Paleolimnol 29:79–94

    Article  Google Scholar 

  • Reavie ED (2010) Final report on sediment diatom reconstructions for four Itasca County Lakes. Submitted to Itasca Soil and Water Conservation District, NRRI Technical Report Number: NRRI/TR-2009/27, p 23

  • Reavie ED, Baratono NG (2007) Multi-core investigation of a lotic bay of Lake of the Woods (Minnesota, USA) impacted by cultural development. J Paleolimnol 38:137–156

    Article  Google Scholar 

  • Reavie ED, Juggins S (2011) Exploration of sample size and diatom-based indicator performance in three North American phosphorus training sets. Aquat Ecol 45:529–538

    Article  Google Scholar 

  • Reavie ED, Smol JP (1998) Freshwater diatoms from the St Lawrence River. Bibliotheca Diatomologica 41:1–137

    Google Scholar 

  • Reavie ED, Kingston JC, Edlund MB, Peterson M (2005) Sediment diatom reconstruction model for Minnesota lakes Report to Itasca Soil and Water Conservation District, p 61

  • Reavie ED, Axler RP, Sgro GV, Danz NP, Kingston JC, Kireta AR, Brown TN, Hollenhorst TP, Ferguson MJ (2006) Diatom-based weighted-averaging transfer functions for Great Lakes coastal water quality: relationships to watershed characteristics. J Gt Lakes Res 32:321–347

    Article  Google Scholar 

  • Rühland K, Paterson AM, Smol JP (2008) Hemispheric-scale patterns of climate-induced shifts in planktonic diatoms from North American and European lakes. Glob Change Biol 14:2740–2745

    Google Scholar 

  • Simpson GL, Oksanen J (2011) Analogue: analogue and weighted averaging methods for palaeoecology, R package version 07-0, URL http://cran.r-project.org/package=analogue

  • Simpson GL, Shilland EM, Winterbottom JM, Keay J (2005) Defining reference conditions for acidified waters using a modern analogue approach. Environ Pollut 137:119–133

    Article  Google Scholar 

  • Stevenson AC, Juggins S, Birks HJB, Anderson DS, Anderson NJ, Battarbee RW, Berge F, Davis RB, Flower RJ, Haworth EY, Jones VJ, Kingston JC, Kreiser AM, Line JM, Munro MAR, Renberg I (1991) The surface waters acidification project palaeolimnology programme: modern diatom/lake-water chemistry data-set. ENSIS Publishing, London

    Google Scholar 

  • ter Braak CJF, Looman CWN (1986) Weighted averaging, logistic regression and the Gaussian response model. Vegetatio 65:3–11

    Article  Google Scholar 

  • ter Braak CJF, Prentice IC (1988) A theory of gradient analysis. Adv Ecol Res 18:271–317

    Article  Google Scholar 

  • ter Braak CJF, van Dam H (1989) Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia 178:209–223

    Article  Google Scholar 

  • Wright HE Jr (1991) Coring tips. J Paleolimnol 6:37–49

    Article  Google Scholar 

Download references

Acknowledgments

Jill Coleman-Wasik, Allison Stevens, Dan Engstrom, Shawn Schottler, Noel Griese and Rian Reed helped with fieldwork and laboratory analyses. The Minnesota lake dataset was progressively developed by John Kingston, Morgan Bursiel, Steve Heiskary and Mark Tomasek (Minnesota Pollution Control Agency), Dan Engstrom and Joy Ramstack (St. Croix Watershed Research Station). This is contribution number 543 of the Center for Water and the Environment, Natural Resources Research Institute, University of Minnesota Duluth. This project was supported in part by the National Science Foundation under grant DEB-0919095. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Euan D. Reavie.

Appendix

Appendix

Microfossil stratigraphies for the four, cored lakes. Top stratigraphies show downcore accumulation rates of various sediment-fossil remains, chrysophyte stomatocyst:diatom ratio, and Shannon–Weaver diatom diversity index. Bottom plots show relative abundances and diatom-inferred total phosphorus concentrations (DI-TP) derived using the full, 145-lake model. The dashed line on each DI-TP profile marks 30 μg/L, which may be used as a guideline for eutrophic conditions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reavie, E.D., Edlund, M.B. Assessing the performance of a diatom transfer function on four Minnesota lake sediment cores: effects of training set size and sample age. J Paleolimnol 50, 87–104 (2013). https://doi.org/10.1007/s10933-013-9706-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-013-9706-x

Keywords

Navigation