Journal of Paleolimnology

, Volume 50, Issue 1, pp 1–13 | Cite as

Sedimentation dynamics and metal loading in Lake Pyhäjärvi, Finland

  • J. MäkinenEmail author
  • A. E. K. Ojala
Original paper


Post-isolation (9,600 year BP) sedimentology in Lake Pyhäjärvi, Finland, was studied using sub-bottom echo-sounding and sediment coring. The sediment sequence appeared in the echo-sounding profiles as two sections: (1) a lower section of homogenous, light grey gyttja clays, and (2) an upper section with dark layers of mainly clay gyttjas and gyttjas, here referred to as C_gyttja. We investigated the thickness and volume of sediments as well as their morphology and areas of accumulation. Approximately 77 % of the lake represents areas of accumulation, containing 34 and 1.3 million tons of dry matter and carbon, respectively. Spatial variability in sedimentological properties indicates that accumulation in the Kirkkoselkä sub-basin was focused into the deepest areas since lake isolation. In the Isoselkä sub-basin, however, accumulation was focused partially onto the flanks of the depression, whereas the deepest parts (23–27 m) of the sub-basin represent erosional areas. There appears to have also been sediment re-suspension and re-deposition, as indicated by erosion surfaces. This, combined with dune-like bottom morphology in the accumulation areas, provides evidence for the role of wind-driven bottom currents on sedimentation dynamics in the Isoselkä sub-basin. Increases in Cu and Zn concentrations, driven by Pyhäsalmi mining activities, were used as a geochemical marker for recent sedimentation (RS) between 1966 and 2008. As a consequence of wind-driven bottom currents, 60 % of the metals accumulated in the Kirkkoselkä sub-basin and 40 % accumulated in the Isoselkä sub-basin. There is a spatial correlation between amounts of C_gyttja and RS. In the middle of dune-like C_gyttja formations in the Isoselkä sub-basin, the RS grain size is smaller than in other areas. Variations in RS are greatest along the borders of the accumulation area, likely a consequence of bottom currents in those areas.


Echo sounding Sedimentation dynamics Bottom currents Metal contamination 


  1. Airiola S, Sunnari H, Heikkinen M-L, Tolkkinen M (2007) Junttiselän kuormittajat. In: Heikkinen M-L, Väisänen T (eds) Pyhäjärven Junttiselän tila ja kunnostusmahdollisuudet. Pohjois-Pohjanmaan ympäristökeskuksen raportteja 7Google Scholar
  2. Anselmetti FS, Ariztegui D, de Batist M, Gebhardt AC, Haberzettl T, Niessen F, Ohlendorf C, Zolitschka B (2009) Environmental history of southern Patagonia unravelled by the seismic stratigraphy of Laguna Potrok Aike. Sedimentology 56:873–892CrossRefGoogle Scholar
  3. Gilli A, Ariztegui D, Anselmetti F, McKenzie JA, Markgraf V, Hajdas I, McCulloch RD (2005) Mid-Holocene strengthening of the southern Westerlies in South America—sedimentological evidences from Lago Cardiel, Argentina (498S). Global Planet Change 49:75–93CrossRefGoogle Scholar
  4. Gregow H, Venäläinen A, Laine M, Niinimäki N, Seitola T, Tuomenvirta H, Jylhä K, Tuomi, T, Mäkelä A (2008) Vaaraa aiheuttavista sääilmiöistä Suomen muuttuvassa ilmastossa. Ilmatieteen laitos. English summary: Danger-causing weather phenomena in changing Finnish climate. Finnish Meteorological Institute. Reports no. 2008: 3, p 106Google Scholar
  5. Håkanson L (1977) The influence of wind, fetch, and the water depth on the distribution of sediments in Lake Vänern, Sweden. Can J Earth Sci 14:397–412CrossRefGoogle Scholar
  6. Håkanson L, Jansson M (1983) Principles of lake sedimentology. Springer, Berlin, p 316CrossRefGoogle Scholar
  7. Heikkinen M-L, Väisänen T (2007) Pyhäjärven Junttiselän tila ja kunnostusmahdollisuudet. Pohjois-Pohjanmaan ympäristökeskuksen raportteja 7, p 78Google Scholar
  8. Helovuori O (1979) Geology of the Pyhäsalmi ore deposit Finland. Econ Geol 74:1084–1101CrossRefGoogle Scholar
  9. Horppila J, Niemistö J (2008) Horizontal and vertical variations in sedimentation and resuspension rates in a stratifying lake—effects of internal seiches. Sedimentology 55:1135–1144CrossRefGoogle Scholar
  10. Johansson H, Brolin A, Håkansson L (2007) New approaches to the modelling of lake basin morphometry. Environ Model Assess 12:213–228CrossRefGoogle Scholar
  11. Jurvansuu T, Pasanen P, Heikkilä K, Aunola A, Mäki T, Erkkilä E, Lappalainen P, Niiranen S, Lähteenmäki S, Mustikkamäki UP, Tolonen S, Lehtinen I, Winblad I (2003) Pyhäsalmen kaivos. The Pyhäsalmi mine. In: Tulkku J (ed) Ruotasen savut. Kylä ja kaivos. Ruotasen maamiesseura ry, Gummerus Kirjapaino Oy, Jyväskylä. ISBN 952-91-5698-7, pp 361–489 (In Finnish)Google Scholar
  12. Koljonen T (1992) Suomen geokemian atlas. Osa 2: Moreeni = The Geochemical Atlas of Finland. Part 2: Till. Espoo: Geologian tutkimuskeskus. 218 p + 9 app mapsGoogle Scholar
  13. Lesht B, Hawley N (1987) Near-bottom currents and suspended sediment concentration in southeastern Lake Michigan. J Great Lakes Res 13:375–386CrossRefGoogle Scholar
  14. Lintinen P (1995) Origin and physical characteristics of till fines in Finland. Geological survey of Finland, Bulletin 379, p 83Google Scholar
  15. Luukas J (1997) Geology and mineral deposits of the central Ostrobothnia. In: Weihed P, Mäki T (eds) Volcanic hosted massive sulfide deposits and gold deposits in the Skellefte district, Sweden and Western Finland. 4th biennial SGS meeting. August 11–13, 1997, Turku, Finland. Excursion guidebook A2Google Scholar
  16. Mäkinen J (2003) Natural arsenic and lead concentration levels in Finnish lake sediments. In: Honkanen JO, Koponen PS (eds) Sixth finnish conference of environmental sciences. Joensuu, May 8–9, 2003. Current perspectives in environmental science and technology. Finnish society for environmental sciences, pp 84–87Google Scholar
  17. Mäkinen J (2011) Pyhäsalmen Pyhäjärven sedimentaatiotutkimukset 2006–2010. Geological survey of Finland. Report. p 52.
  18. Mäkinen J, Lerssi J (2007) Characteristics and seasonal variation of sediments in Lake Junttiselkä, Pyhäsalmi, Finland. Mine Water Environ 26:217–228CrossRefGoogle Scholar
  19. Mäkinen J, Pajunen H (2005) Correlation of carbon with acid-soluble elements in Finnish lake sediments : two opposite composition trends. Geochem Explor Environ Anal 5:169–181Google Scholar
  20. Mikkola M, Pakkala J (1997) Keski-Pohjanmaan vesistöjen tila ja vesiensuojelun kehittämissuunnitelma. Keski-Pohjanmaan ympäristökeskus, Alueelliset ympäristöjulkaisut, p 27Google Scholar
  21. Ojala AEK, Tiljander M (2003) Testing the fidelity of sediment chronology: comparison of varve and paleomagnetic results from Holocene lake sediments from central Finland. Quat Sci Rev 22:1787–1803CrossRefGoogle Scholar
  22. Pajunen H (2004) Järvisedimentit kuiva-aineen ja hiilen varastona. Summary: lake sediments as a store of dry matter and carbon. Geological survey of Finland, Report of investigation 160, p 308Google Scholar
  23. Räisänen M-L, Mäkinen J (2007) Pyhäjärven Junttiselän veden ja pintasedimenttien vuodenaikainen koostumusvaihtelu, 2005–2007. Geologian tutkimuskeskus, Itä-Suomen yksikkö S49/0000/2007/44,
  24. Renberg I, Wik-Persson M, Emteryd O (1994) Pre-industrial atmospheric lead contamination detected in Swedish lake sediments. Nature 368:323–326CrossRefGoogle Scholar
  25. Rowan DJ, Cornett RJ, King K, Risto B (1995) Sediment focusing and 210Pb dating: a new approach. J Paleolimnol 13:107–118CrossRefGoogle Scholar
  26. Saarinen T (1994) Palaeomagnetic study of the Holocene sediments of Lake Päijänne (Central Finland) and Lake Paanajärvi (North-West Russia). Geological survey of Finland, Bulletin 376, p 87Google Scholar
  27. Saarnisto M (1970) The late Weichselian and Flandrian history of the Saimaa Lake Complex. Societas Scientiarum Fennica, Commentationes Physico-Mathematicae, 37, p 107Google Scholar
  28. Saltikoff B, Puustinen K, Tontti M (2006) Metallogenic zones and metallic mineral deposits in Finland: explanation to the Metallogenic map of Finland. Geological survey of Finland special paper 35, p 66Google Scholar
  29. Snowball I, Zillén L, Ojala A, Saarinen T, Sandgren P (2007) FENNOSTACK and FENNORPIS : varve dated Holocene palaeomagnetic secular variation and relative palaeointensity stacks for Fennoscandia. Earth Planet Sci Lett 255:106–116CrossRefGoogle Scholar
  30. Thompson R, Oldfield F (1986) Environmental magnetism. Allen and Unwin, London, p 227CrossRefGoogle Scholar
  31. Weyhenmeyer GA, Håkanson L, Meili M (1997) A validated model for daily variations in the flux, origin, and distribution of settling particles within lakes. Limnol Oceanogr 42:1517–1529CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Geological Survey of FinlandKuopioFinland
  2. 2.Geological Survey of FinlandEspooFinland

Personalised recommendations