Journal of Paleolimnology

, Volume 49, Issue 4, pp 647–662 | Cite as

A 2300-year record of environmental change from SW Anatolia, Lake Burdur, Turkey

  • Alina Tudryn
  • Piotr Tucholka
  • Nevzat Özgûr
  • Elisabeth Gibert
  • Omer Elitok
  • Zuheyr Kamaci
  • Marc Massault
  • André Poisson
  • Bernard Platevoet
Original paper


This work deals with changes recorded by lacustrine sediments from SW Anatolia in Turkey in the context of increasing stress on the Mediterranean environment in relation to human-climate-environmental interactions. Paleolimnological investigations were carried out on Lake Burdur (Lake District geographical subregion of Turkey), which has been subject to rapid changes in its hydrological system that caused a ~10-m water-level drop in the last 30 years. Study of a 5-m-long sediment core, taken from the recently dried out part of the lake, shows significant variation in granulometry, clay mineralogy, nitrogen and organic carbon content and its isotopic composition (∂13Corg) throughout the sedimentary sequence, which represents the last 2,300 years. Chronology is based on radiocarbon dates obtained from plant fragments. The results provide a record of environmental changes, including biological productivity and erosion intensity, in relation to changes in water level and humidity of the area. The lowest previous water level, which is the same as observed today, occurred at approximately 300 BC, after which time a water-level increase led to a maximum stage between AD 200 and 1200. From AD 1200 to the present, the climate became drier accompanied by an overall lowering of water level, with periods of water-level fluctuations superimposed. The lake never dried out as is observed today at the coring site. The present drop in the lake water level is attributed to human activity rather than to climate change. This record of climate and environmental change in the Lake Burdur area appears to be stratigraphically complete. This study provides rare data for the late Holocene in Anatolia as well as information about rapid climate changes during specific periods. The influence of both the Northern hemisphere atmospheric circulation and Indian monsoon on the east Mediterranean remains unclear. Nevertheless, the North Sea—Caspian atmospheric teleconnection could be an important factor that explains local differences in climatic evolution of Anatolia during the period considered.


Lake Burdur East Mediterranean Environmental change Late Holocene Palaeoclimate Anthropization 



This work was financed by Socrates/Erasmus of Paris Sud-11 University, BQR internes of IDES, CNRS UMR8148 (2008, 2009), and by the project ARTEMIS at LMC14, Saclay. Suleyman Demirel University at Isparta, organised and financially supported the field works. We would like to express our deep gratitude to the Turkish General Directorate of State Hydraulic Works, XVIII Regional Directorate, 182. Sectional Directorate-Burdur for data on lake water level variation from 1960. Remy Pichon and Olivier Dufaure carried out a part of clay analyses. Many thanks to Michel Fontugne and Florent Barbecot for discussions. Rachael Morgan and Catherine Last provided a valuable help with language editing. The final version of the paper was greatly improved by hard work done by two anonymous reviewers and Thomas J. Whitmore Editor-in-Chief of this journal.


  1. Ataol M (2010) Burdur gülü’nde seviye degisimleri. Cografi Bilimler Dergisi CBD 8(1):77–92Google Scholar
  2. Benson LV, Meyers PA, Spencer RJ (1991) Change in the size of Walker Lake during the past 5000 years. Palaeogeogr Palaeoclimatol Palaeoecol 81:189–214CrossRefGoogle Scholar
  3. Bering D (1971) Lithostratigraphie, teknonische Entwiklung and Seengeschichte der neogenen und quataran intramontanen Becken der Pisidischen Seenregion (Südanatolien) (Kanozoikum und Braunkohlen der Türkei 5). Beihefte zum Geologischen Jahrbuch 101:1–150Google Scholar
  4. Berner RA (1980) Early diagenesis: a theoretical approach. Princeton University Press, Princeton, p 237Google Scholar
  5. Bollin EM (1970) Chalcogenides. In: Mackenzie RC (ed) Differential thermal analysis, vol 1. Fundamental aspects. Academic Press, London, pp 193–236Google Scholar
  6. Chamley H (1989) Clay sedimentology. Springer, New York, p 623Google Scholar
  7. Curtis C (1987) Mineralogical consequences of organic matter degradation in sediments: inorganic/organic diagenesis. In: Legget JK, Zuffa GG (eds) Marine clactic sedimentology. Graham and Trotman, London, pp 108–123CrossRefGoogle Scholar
  8. Dolmaz MN (2007) An aspect of the subsurface structure of the Burdur-Isparta area, SW Anatolia, based on gravity and aeromagnetic data, and some tectonic implications. Earth Planets Space 59:5–12Google Scholar
  9. Eastwood WJ, Roberts N, Lamb HF, Tibby JC (1999) Holocene environmental change in southwest Turkey: a palaeoecological record of lake and catchment-related changes. Quat Sci Rev 18:671–695CrossRefGoogle Scholar
  10. Eastwood WJ, Leng MJ, Roberts N, Davis B (2007) Holocene climate change in the eastern Mediterranean region: a comparison of stable isotope and pollen data from Lake Gölhishar, southwest Turkey. J Quat Sci 22(4):327–341CrossRefGoogle Scholar
  11. England A, Eastwood WJ, Roberts CN, Turner R, Haldon JF (2008) Historical landscape change in Cappadocia (central Turkey): a palaeoecological investigation of annually laminated sediments from Nar lake. Holocene 18(8):1229–1245CrossRefGoogle Scholar
  12. Enzel Y, Bookman R, Sharon D, Gvirtzman H, Dayan U, Ziv B, Stein M (2003) Late Holocene climates of the Near East deduced from Dead Sea level variations and modern regional winter rainfall. Quat Res 60:263–273CrossRefGoogle Scholar
  13. Galicki SJ, Doerner JP (2010) Holocene lake evolution in the Elmali Basin, Southwest Turkey. Phys Geogr 31(3):234–253CrossRefGoogle Scholar
  14. Girgin S, Kazanci N, Dugel M (2004) On limnology of deep and saline lake Burdur in Turkey. Acta Hydrochim Hydobiol 32(3):189–200CrossRefGoogle Scholar
  15. Gülle I, Turna II, Güçlü SS, Gülle P, Güçlü Z (2010) Zooplankton seasonal abundance and vertical distribution of highly alkaline Lake Burdur, Turkey. Turkish J Fish Aquat Sci 10:245–254Google Scholar
  16. Heim C, Nowaczyk N, Negendank J, Leroy SAG, Ben-Avraham Z (1997) Middle-East desertification: evidence from the Dead Sea. Naturwissenschaften 84:398–401CrossRefGoogle Scholar
  17. Holtzapffel T (1985) Les minéraux argileux: preparation, analyse, diffractometrique et determination. Soc Géol Nord Publ 12:136Google Scholar
  18. Holzhauser H, Magny M, Zumbühl HJ (2005) Glacier and lake-level variations in west-central Europe over the last 3500 years. Holocene 15:789–801CrossRefGoogle Scholar
  19. Jones MD, Roberts N (2008) Interpreting lake isotope records of Holocene environmental change in the Eastern Mediterranean. Quat Int 181:32–38CrossRefGoogle Scholar
  20. Jones M, Roberts N, Leng M, Turkes M (2006) A high-resolution late Holocene lake isotope record from Turkey and links to North Atlantic and monsoon climate. Geology 34:361–364CrossRefGoogle Scholar
  21. Jones MD, Roberts N, Leng MJ (2007) Quantifying climatic change through the last glacial-interglacial transition based on lake isotope palaeohydrology from central Turkey. Quat Res 67:463–473CrossRefGoogle Scholar
  22. Kaniewski D, Paulissen E, de Laet V, Dossche K, Waelkens M (2007) A high-resolution late Holocene landscape ecological history inferred from an intramontane basin in the Western Taurus Mountains, Turkey. Quat Sci Rev 26:2201–2218CrossRefGoogle Scholar
  23. Kaniewski D, Paulissen E, de Laet V, Waelkens M (2008) Late Holocene fire impact and post-fire regeneration from the Bereket basin, Taurus Mountains, southwest Turkey. Quat Res 70:228–239CrossRefGoogle Scholar
  24. Kazanci N, Toprak Ö, Leroy SAG, Öncel S, Ileri Ö, Emre Ö, Costa P, Erturac K, McGee E (2006) Boron content of Lake Ulubat sediment: a key to interpret the morphological history of NW Anatolia, Turkey. Appl Geochem 21:134–151CrossRefGoogle Scholar
  25. Kis M, Erol O, Senel S, Ergin M (1989) Preliminary results of radiocarbon dating of coastal deposits of the Pleistocene pluvial lake of Burdur, Turkey. J Islam Acad Sci 2(1):37–40Google Scholar
  26. Kutiel H, Benaroch Y (2002) North Sea-Caspian Pattern (NCP)—an upper level atmospheric teleconnection affecting the Eastern Mediterranean: identification and definition. Theor Appl Climatol 71:17–28CrossRefGoogle Scholar
  27. Kutiel H, Maheras P, Paz S (2002) North Sea—Caspian Pattern (NCP)—an upper level atmospheric teleconnection affecting the eastern Mediterranean—implications on the regional climate. Theor Appl Climatol 72:173–192. doi: 10.1007/s00704-002-0674-8 CrossRefGoogle Scholar
  28. Kuzucuoglu C, Parish R, Karabiyikoglu M (1998) The dune systems of the Konya Plain (Turkey): their relation to environmental changes in Central Anatolia during the late Pleistocene and Holocene. Geomorphology 23:257–271CrossRefGoogle Scholar
  29. Kuzucuoglu C, Dörfler W, Kunesch S, Goupill F (2011) Mid- to late-Holocene climate change in central Turkey: the Tecer Lake record. Holocene 21(1):173–188CrossRefGoogle Scholar
  30. Leavitt PR (1993) A review of factors that regulate carotenoid and chlorophyll deposition and fossil pigment abundance. J Paleolimnol 9:109–127CrossRefGoogle Scholar
  31. Lefèvre C, Bellon H, Poisson A (1983) Presences de leucitites dans le volcanisme Plioceene de la region d’Isparta (Taurides occidentales, Turquie). C R Acad Sci 297(2):367–372Google Scholar
  32. Leroy SAG, Kazanci N, Ileri Ö, Kibar M, Emre O, McGee E, Griffiths HI (2002) Abrupt environmental changes within a late Holocene lacustrine sequence south of the Marmara Sea (Lake Manyas, N-W Turkey): possible links with seismic events. Mar Geol 190:531–552CrossRefGoogle Scholar
  33. Leroy SAG, Schwab MJ, Costa PJM (2010a) Seismic influence on the last 1500-year infill history of lake Sapanca (North Anatolian Fault, NW Turkey). Tectonophys 486:15–27CrossRefGoogle Scholar
  34. Leroy SAG, Marco S, Bookman R, Miller CS (2010b) Impact of earthquakes on agriculture during the Roman-Byzantine period from pollen records of the Dead Sea laminated sediment. Quat Res 73:191–200CrossRefGoogle Scholar
  35. Leroy SAG, Lahijani HAK, Djamali M, Naqinezhad A, Moghadam MV, Arpe K, Shah-Hosseini M, Hosseindoust M, Miller ChS, Tavakoli V, Habibi P, Naderi M (2011) Late Holocene palaeoenvironmental records from the Anzali and Amirkola Lagoons (south Caspian Sea): vegetation and sea level changes. Palaeogeogr Palaeoclimatol Palaeoecol. doi: 10.1016/j.palaeo.2011.02.002 Google Scholar
  36. Liu Z, Colin C, Trentesaux A, Blamart D, Bassinot F, Siani G, Sicre MA (2004) Erosional history of the eastern Tibetan Plateau over past 190 kyr: clay mineralogical investigations from the southwestern South China Sea. Mar Geol 209:1–18CrossRefGoogle Scholar
  37. Liu Z, Tuo S, Colin C, Liu JT, Huang CY, Selvaraj K, Chen CTA, Zhao Y, Siringan FP, Boulay S, Chen Z (2008) Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation. Mar Geol 255:149–155CrossRefGoogle Scholar
  38. Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 144:289–302CrossRefGoogle Scholar
  39. Meyers PA (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org Geochem 34:261–289CrossRefGoogle Scholar
  40. Meyers PA (2003) Applications of organic geochemistry to paleolimnological recostructions: a summary of examples from the Laurential Great Lakes. Org Geochem 34:261–289CrossRefGoogle Scholar
  41. Meyers PA, Lallier-Vergès E (1999) Lacustrine sedimentary organic matter records of late Quaternary paleoclimates. J Paleolimnol 21:345–372CrossRefGoogle Scholar
  42. Morellon M, Valero-Garcés B, Vegas-Vilarrubia T, Gonzàlez-Sampériz P, Romero O, Delgado-Huertas A, Mata P, Moreno A, Rico M, Corella HP (2009) Lateglacial and Holocene palaeohydrology in the western Mediterranean region: the Lake Estanya record (NE Spain). Quat Sci Rev 28:2582–2599CrossRefGoogle Scholar
  43. Petschick R (2000) MacDiff 4.2.2. (Online). Available: (Cited 01-12-2001)
  44. Platevoet B, Scaillet S, Guillou H, Blamart D, Nomade S, Massault M, Poisson A, Elitok Ö, Özgür N, Yagmurlu F, Yilmaz K (2008) Pleistocene eruptive chronology of the Gölcük volcano, Isparta Angle, Turkey. Quaternaire 19(2):147–156CrossRefGoogle Scholar
  45. Poisson A, Yagmurlu F, Bozcu M, Senturk M (2003) New insights on the tectonic setting and evolution around the apex of the Isparta Angle (SW Turkey). Geol J 38:257–282CrossRefGoogle Scholar
  46. Price SP, Scott B (1991) Pliocene Burdur basin, SW Turkey: tectonics, seismicity and sedimentation. J Geol Soc 148(2):345–354CrossRefGoogle Scholar
  47. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hogg AG, Hughen KA, Kromer B, McCormac FG, Manning SW, Ramsey CB, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2004) IntCal04 terrestrial radiocarbon age calibration, 26–0 ka BP. Radiocarbon 46:1029–1058Google Scholar
  48. Roberts N (2003) Climate history from lake sediments in Western Turkey and implications for culture change, Anatolian Archaeology report (2001 field season).
  49. Roberts N, Reed J, Leng MJ, Kuzucuoglu C, Fontugne M, Bertaux J, Woldring H, Bottema S, Black S, Hunt E, Karabryrkoglu M (2001) The tempo of Holocene climatic change in the Eastern Mediterranean region: new high-resolution crater-lake sediment data from central Turkey. Holocene 11:719–734Google Scholar
  50. Roberts N, Jones MD, Benkaddour A, Eastwood WJ, Filippi ML, Frogley MR, Lamb HF, Leng MJ, Reed JM, Stein M, Stevens L, Valero-Garcés B, Zanchetta G (2008) Stable isotope records of late Quaternary climate and hydrology from Mediterranean lakes: the ISOMED synthesis. Quat Sci Rev 27:2426–2441CrossRefGoogle Scholar
  51. Roberts N, Moreno A, Valero-Garcés BL, Corella JP, Jones M, Allcock S, Woodbridge J, Morellon M, Luterbacher J, Xoplaki E, Türkes M (2012) Palaeolimnological evidence for an east-west climate see-saw in the Mediterranean since AD 900. Glob Planet Chang 84–85:23–34CrossRefGoogle Scholar
  52. Sener E, Davraz A, Ismailov T (2005) Burdur Gülü Seviye Degisimlerinin Cok Zamanli Görüntüleri Ile Izlenmesi, Türkiye Kuvaterner Sempozyumu, TURQUA-V, 148–156, 2–5 June 2005Google Scholar
  53. Sintubin M, Muchez P, Similox-Tohon D, Verhaert G, Paulissen E, Waelkens M (2003) Seismic catastrophes at the ancient city of Sagalassos (SW Turkey) and their implications for the seismotectonics in the Burdur-Isparta area. Geol J 38:359–374CrossRefGoogle Scholar
  54. Smith ME, Koteyeva NK, Voznesenskaya EV, Okita TW, Edwards GE (2009) Photosynthetic features of non-Kranz type C4 versus Kranz type C4 and C3 species of subfamily Suaedoideae (Chenopodiaceae). Funct Plant Biol 36(9):770–782CrossRefGoogle Scholar
  55. Still CJ, Berry J, Ribas-Carbo M, Helliker BR (2003) The contribution of C3 and C4 plants to the carbon cycle of a tallgrass prairie: an isotopic approach. Oceanologia 136:347–359Google Scholar
  56. Stuiver M, Reimer PJ (1993) Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35:215–230Google Scholar
  57. Temiz H, Poisson A, Andrieux J, Barka A (1997) Kinematics of the Plio-Quaternary Burdur-Dinar cross-fault system in SW Anatolia (Turley). Ann Tectonicae 11:102–113Google Scholar
  58. Thompson R, Oldfield F (1986) Environmental magnetism. Allen and Unwin, London, p 227CrossRefGoogle Scholar
  59. Tudryn A, Tucholka P (2004) Magnetic monitoring of thermal alteration for natural pyrite and greigite. Acta Geophys Polon 52(4):509–520Google Scholar
  60. Turner R, Roberts N, Jones MD (2008) Climatic pacing of Mediterranean fire histories from lake sedimentary microcharcoal. Glob Planet Chang 63:317–324CrossRefGoogle Scholar
  61. Vermoere M, Van Thuyene T, Six S, Vanhecke L, Waelkens M, Paulissen E, Smets E (2002) Late Holocene local vegetation dynamics in the marsh of Gravgaz (southwest Turkey). J Paleolimnol 27:429–451CrossRefGoogle Scholar
  62. Von Rad U, Schaaf M, Michels KH, Schulz H, Berger WH, Siroko F (1999) A 5000 yr record of climate change in varved sediments from the oxygen minimum zone off Pakistan: Northeastern Arabian Sea. Quat Res 51:39–53CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Alina Tudryn
    • 1
    • 2
  • Piotr Tucholka
    • 1
    • 2
  • Nevzat Özgûr
    • 3
  • Elisabeth Gibert
    • 2
  • Omer Elitok
    • 4
  • Zuheyr Kamaci
    • 5
  • Marc Massault
    • 1
    • 2
  • André Poisson
    • 1
  • Bernard Platevoet
    • 1
    • 2
  1. 1.Département des Sciences de la TerreUniversité Paris Sud-11OrsayFrance
  2. 2.Laboratoire IDES, CNRS UMR8148Université Paris Sud-11OrsayFrance
  3. 3.Research and Application Centre for Geothermal Energy, Groundwater and Mineral ResourcesSüleyman Demirel UniversityIspartaTurkey
  4. 4.Department of Geological EngineeringSüleyman Demirel UniversityIspartaTurkey
  5. 5.Department of Geophysical EngineeringSüleyman Demirel UniversityIspartaTurkey

Personalised recommendations