Journal of Paleolimnology

, Volume 48, Issue 3, pp 571–586 | Cite as

An illustrated guide to the identification of cladoceran subfossils from lake sediments in northeastern North America: part 1—the Daphniidae, Leptodoridae, Bosminidae, Polyphemidae, Holopedidae, Sididae, and Macrothricidae

Original paper


Cladocera identifications based on subfossil remains differ considerably from identifications based on whole animals, yet despite this very few subfossil Cladocera identification guides exist. In particular, taxa belonging to the families Daphniidae, Leptodoridae, Polyphemidae, Holopedidae, Sididae, and Macrothricidae tend to preserve poorly, with only a few, small body parts available for identification within the sediments. Since many of these taxa are important environmental indicators in lakes, subfossil identification guides that enable them to be recognized based on only a few body parts are critical for paleolimnological investigations utilizing Cladocera. In this illustrated identification guide, we provide detailed descriptions of subfossil remains commonly recovered for 14 species belonging to the families Daphniidae, Leptodoridae, Polyphemidae, Holopedidae, Sididae, Macrothricidae, and Bosminidae for lakes in eastern Canada and northeastern USA, where several recent subfossil Cladocera-based investigations of environmental change have been focused. It is our hope that this taxonomic guide will improve consistency in subfossil Cladocera taxonomy among laboratories, and help to stimulate additional research in this ecologically significant region. The diverse taxa belonging to the family Chydoridae are considered separately.


Cladocera Subfossils Paleolimnology Identification guide Northeastern North America 



We acknowledge A. Jeziorski, J. Kurek, L. Mosscrop, and A. Sorce for providing some photographs of cladoceran remains, and feedback on the manuscript, as well as N. Kim for providing photographs of Bythotrephes. In addition, we thank K. Szeroczynska and an anonymous reviewer for providing comments that greatly improved the quality of the manuscript. This research was funded by Natural Science and Engineering Research Council of Canada (NSERC) grants to JPS and JBK.

Supplementary material

10933_2012_9632_MOESM1_ESM.doc (200 kb)
Supplementary material 1 (DOC 199 kb)
10933_2012_9632_MOESM2_ESM.doc (28 kb)
Supplementary material 2 (DOC 28 kb)


  1. Alric B, Perga M-E (2011) Effects of production, sedimentation and taphonomic processes on the composition and size structure of sedimenting cladoceran remains in a large deep subalpine lake: paleo-ecological implications. Hydrobiologia 676:101–116CrossRefGoogle Scholar
  2. Arseneau KMA, Driscoll CT, Brager LM, Ross KA, Cumming BF (2011) Recent evidence of biological recovery from acidification in the Adirondacks (New York, USA): a multiproxy paleolimnological investigation of Big Moose Lake. Can J Fish Aquat Sci 68:575–592CrossRefGoogle Scholar
  3. Barbiero RP, Tuchman ML (2004) Changes in the crustacean communities of Lakes Michigan, Huron, and Erie following the invasion of the predatory cladoceran Bythotrephes longimanus. Can J Fish Aquat Sci 61:2111–2125CrossRefGoogle Scholar
  4. Bos DG (2001) Sedimentary cladoceran remains, a key to interpreting past changes in nutrients and trophic interactions. PhD thesis, Queen’s University, Kingston Ontario CanadaGoogle Scholar
  5. Branstrator DK (1995) Ecological interactions between Bythotrephes cederstroemi and Leptodora kintii and the implications for species replacement in Lake Michigan. J Great Lakes Res 21:670–679CrossRefGoogle Scholar
  6. Branstrator DK, Brown ME, Shannon LJ, Thabes M, Heimgartner K (2006) Range expansion of Bythotrephes longimanus in North America: evaluating habitat characteristics in the spread of an exotic zooplankter. Biol Invasions 8:1367–1379CrossRefGoogle Scholar
  7. Brooks JL (1959) Cladocera. In: Edmondson WT (ed) Freshwater biology, 2nd edn. Wiley, New York, pp 587–656Google Scholar
  8. Bur MT, Klarer DM, Krieger KA (1986) First records of a European cladoceran, Bythotrephes cederstroemi, in Lakes Erie and Huron. J Great Lakes Res 12:144–146CrossRefGoogle Scholar
  9. Cox AJ, Hebert PDN (2001) Colonization, extinction, and phylogeographic patterning in a freshwater crustacean. Mol Ecol 10:371–386CrossRefGoogle Scholar
  10. Cullis KI, Johnson GE (1988) First evidence of the cladoceran Bythotrephes cederstroemi Schoedler in Lake Superior. J Great Lakes Res 14:524–525CrossRefGoogle Scholar
  11. De Melo R, Hebert PDN (1994) Founder effects and geographical variation in the invading cladoceran Bosmina (Eubosmina) coregoni Baird 1857 in North America. Heredity 73:490–499CrossRefGoogle Scholar
  12. Deasley K, Korosi JB, Thienpont JR, Kokelj SV, Pisaric MFJ, Smol JP (2012) Investigating the response of Cladocera to a major saltwater intrusion event in an Arctic lake from the outer Mackenzie Delta (NT, Canada). J Paleolimnol 48:287–296Google Scholar
  13. DeSellas AM, Paterson AM, Sweetman JN, Smol JP (2011) Assessing the effects of multiple environmental stressors on zooplankton assemblages in Boreal Shield lakes since pre-industrial times. J Limnol 70:41–56CrossRefGoogle Scholar
  14. Elías-Gutierrez M, Circos-Pérez J, Suárez-Morales E, Silva-Briano M (1999) The freshwater Cladocera (Orders Ctenopoda and Anomopoda) of Mexico, with comments on selected taxa. Crustaceana 72:171–186CrossRefGoogle Scholar
  15. Elías-Gutierrez M, Kotov AA, Garfias-Espejo T (2006) Cladocera (Crustacea: Ctenopoda, Anomopoda) from southern Mexico, Belize, and northern Guatemala, with some biogeographical notes. Zootaxa 1119:1–27Google Scholar
  16. Fairchild GW (1981) Movement and microdistribution of Sida crystallina and other littoral microcrustacea. Ecology 62:1341–1352CrossRefGoogle Scholar
  17. Frey DG (1960) The ecological significance of cladoceran remains in lake sediments. Ecology 41:684–699CrossRefGoogle Scholar
  18. Frey DG (1962) Cladocera from the Eemian interglacial of Denmark. J Paleontol 36:1133–1154Google Scholar
  19. Frey DG (1976) Interpretation of quaternary paleoecology from Cladocera and midges, and prognosis regarding usability of other organisms. Can J Zool 54:2208–2226CrossRefGoogle Scholar
  20. Frey DG (1986) Cladocera analysis. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 667–692Google Scholar
  21. Fryer G (1980) Acidity and species diversity in freshwater crustacean faunas. Freshw Biol 10:41–45CrossRefGoogle Scholar
  22. Hall RI, Yan ND (1997) Comparing annual population growth estimates of the exotic invader Bythotrephes by using sediment and plankton records. Limnol Oceanogr 42:112–120CrossRefGoogle Scholar
  23. Hann BJ, Karrow P (1984) Pleistocene paleoecology of the Don and Scarborough Formations, Toronto, Canada, based on cladoceran microfossils at the Don Valley Brickyard. Boreas 13:377–391CrossRefGoogle Scholar
  24. Hebert PDN (1995) The Daphnia of North America: an illustrated fauna. CD-ROM, University of Guelph, GuelphGoogle Scholar
  25. Jeziorski A, Yan ND, Paterson AM, DeSellas AM, Turner MA, Jeffries DS, Keller W, Weeber RC, McNicol RC, Palmer ME, McIver K, Arseneau K, Ginn BK, Cumming BF, Smol JP (2008) The widespread threat of calcium decline in fresh waters. Science 322:1374–1377CrossRefGoogle Scholar
  26. Jeziorski A, Paterson AM, Smol JP (2012) Crustacean zooplankton sedimentary remains from calcium-poor lakes: complex responses to threshold concentrations. Aquat Sci 74:121–131CrossRefGoogle Scholar
  27. Johannsson OE, Mills EL, O’Gorman R (1991) Changes in nearshore and offshore zooplankton communities in Lake Ontario: 1981–1988. Can J Fish Aquat Sci 48:1546–1557CrossRefGoogle Scholar
  28. Keilty TJ (1988) A new biological marker layer in the sediments of the Great Lakes: Bythotrephes cederstroemi (Schodler) spines. J Great Lakes Res 14:369–371CrossRefGoogle Scholar
  29. Kerfoot WC, Robbins JA, Weider LJ (1999) A new approach to historical reconstruction: combining descriptive and experimental paleolimnology. Limnol Oceanogr 44:1232–1247CrossRefGoogle Scholar
  30. Korhola A, Rautio M (2001) Cladocera and other branchiopod crustaceans. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using Lake Sediments zoological indicators, vol 4. Kluwer Academic Publishers, Dordrecht, pp 5–41CrossRefGoogle Scholar
  31. Korinek V (1981) Diaphanosoma birgei n. sp. (Crustacea, Cladocera). A new species from America and its widely distributed subspecies Diaphanosoma birgei ssp. lacustris n. ssp. Can J Zool 59:1115–1121CrossRefGoogle Scholar
  32. Korosi JB, Smol JP (2012a) A comparison of present-day and pre-industrial cladoceran assemblages from soft-water Nova Scotia (Canada) lakes with different regional acidification histories. J Paleolimnol 47:43–54CrossRefGoogle Scholar
  33. Korosi JB, Smol JP (2012b) Examining the effects of climate change, acidic deposition, and copper sulphate poisoning on long-term changes in cladoceran assemblages. Aquatic Sciences. doi: 10.1007s/00027-012-0261-8
  34. Korosi JB, Smol JP (2012c) An illustrated guide to the identification of cladoceran subfossils from lake sediments in northeastern North America: Part 2- the Chydoridae. J Paleolimnol. doi: 10.1007/s10933-012-9636-z
  35. Korosi JB, Paterson AM, DeSellas AM, Smol JP (2008) Linking mean body size of pelagic Cladocera to environmental variables in Precambrian Shield lakes: a paleolimnological approach. J Limnol 67:22–34CrossRefGoogle Scholar
  36. Korosi JB, Paterson AM, DeSellas AM, Smol JP (2010) Comparison of present-day and pre-industrial changes in Bosmina and Daphnia size structure from soft-water Ontario lakes. Can J Fish Aquat Sci 67:754–762CrossRefGoogle Scholar
  37. Korosi JB, Jeziorski A, Smol JP (2011) Using morphological characters of subfossil daphniid postabdominal claws to improve taxonomic resolution within species complexes. Hydrobiologia 676:117–128CrossRefGoogle Scholar
  38. Korovchinsky NM (1992) Sididae & Holopediidae (Crustacea: Daphniiformes). In: Dumont HJ (ed) Guide to the identification of the microinvertebrates of the continental waters of the world volume 3. SPB Academy Publishing, Amsterdam, 82 ppGoogle Scholar
  39. Kurek J, Korosi JB, Jeziorski A, Smol JP (2010) Establishing reliable minimum count sizes for cladoceran subfossils sampled from lake sediments. J Paleolimnol 44:603–612CrossRefGoogle Scholar
  40. Kurek J, Weeber RC, Smol JP (2011) Environment trumps predation and spatial factors in structuring cladoceran communities from Boreal Shield lakes. Can J Fish Aquat Sci 68:1408–1419CrossRefGoogle Scholar
  41. Lehman JT (1987) Palearctic predator invades North American Great Lakes. Oecologia 74:478–480CrossRefGoogle Scholar
  42. Mabee WR (1988) A note on the occurrence of Bosmina (Eubosmina) coregoni (Crustacea, Cladocera) in Missouri: a new record and range extension. Southwest Nat 43:95–96Google Scholar
  43. MacIsaac HJ, Ketelaars HAM, Grigorovich IA, Ramcharan CW, Yan ND (2000) Modeling Bythotrephes longimanus invasions in the Great Lakes basin based on its European distribution. Arch Hydrobiol 149:1–21Google Scholar
  44. Manca M, Torretta B, Comoli P, Amsinck SL, Jeppesen E (2007) Major changes in trophic dynamics in large, deep sub-alpine Lake Maggiore from 1940s to 2002: a high resolution comparative palaeo-neolimnological study. Freshw Biol 52:2256–2269CrossRefGoogle Scholar
  45. McNaught DC (1978) Spatial heterogeneity and niche differentiation in zooplankton of Lake Huron. Int Ver Theor Angew Limnol Verh 20:341–346Google Scholar
  46. Nevalainen L, Luoto TP, Levine S, Manca M (2011) Paleolimnological evidence for increased sexual reproduction in chydorids (Chydoridae, Cladocera) under environmental stress. J Limnol 70:255–262CrossRefGoogle Scholar
  47. Nykänen M, Vakkilainen K, Liukkonen M, Kairesalo T (2009) Cladoceran remains in lake sediments: a comparison between plankton counts and sediment records. J Paleolimnol 42:551–570CrossRefGoogle Scholar
  48. Paterson MJ (1994) Paleolimnological reconstruction of recent changes in assemblages of Cladocera from acidified lakes in the Adirondack Mountains (New York). J Paleolimnol 11:189–200CrossRefGoogle Scholar
  49. Perga M-E (2010) Potential of δ13C and δ15N of cladoceran subfossil exoskeletons for paleo-ecological studies. J Paleolimnol 44:387–395CrossRefGoogle Scholar
  50. Potts WTW, Fryer G (1979) The effects of pH and salt content on sodium balance in Daphina magna and Acantholeberis curvirostris (Crustacea: Cladocera). J Comp Physiol 129:289–294Google Scholar
  51. Rowe CL, Adamowicz SJ, Hebert PDN (2007) Three new cryptic species of the freshwater zooplankton genus Holopedium (Crustacea: Branchiopoda: Ctenopoda), revealed by genetic methods. Zootaxa 1656:1–49Google Scholar
  52. Sarmaja-Korjonen K, Seppä H (2007) Abrupt and consistent responses of aquatic and terrestrial ecosystems to the 8200 cal. yr cold event: a lacustrine record from Lake Arapisto, Finland. Holocene 17:457–467CrossRefGoogle Scholar
  53. Sergeev VN (1970) Feeding mechanism, feeding behaviour and functional morphology of Ophryoxus gracilis G.O. Sars (Macrothricidae, Cladocera). Int Revue ges Hydrobiol 55:245–279CrossRefGoogle Scholar
  54. Smol JP, Boucherle MM (1985) Postglacial changes in algal and cladoceran assemblages in Little Round Lake, Ontario. Arch Hydrobiol l03:25–49Google Scholar
  55. Suchy KD, Hann BJ (2007) Using microfossil remains in lake sediments to examine the invasion of Eubosmina coregoni (Cladocera, Bosminidae) in Lake of the Woods, Ontario, Canada. J Great Lakes Res 33:867–874CrossRefGoogle Scholar
  56. Suchy KD, Salki A, Hann BJ (2010) Investigating the invasion of the nonindigenous zooplankter, Eubosmina coregoni, in Lake Winnipeg, Manitoba, Canada. J Great Lakes Res 36:159–166CrossRefGoogle Scholar
  57. Sweetman JN, Smol JP (2006) A guide to the identification of cladoceran remains (Crustacea: Branchiopoda) in Alaskan lake sediments. Arch Hydrobiol (Supplement) 151:353–394Google Scholar
  58. Szeroczyńska K, Sarmaja-Korjonen K (2007) Atlas of subfossil Cladocera from central and northern Europe. Friends of the Lower Vistula Society, Świecie, 84 ppGoogle Scholar
  59. Van Damme K, Eggermont H (2011) The Afromontane Cladocera (Crustacea: Branchiopoda) of the Rwenzori (Uganda–D. R. Congo): taxonomy, ecology and biogeography. Hydrobiologia 676:57–100CrossRefGoogle Scholar
  60. Walseng B, Yan ND, Schartau AK (2003) Littoral microcrustacean (Cladocera and Copepoda) indicators of acidification in Canadian Shield lakes. Ambio 32:208–213Google Scholar
  61. Williams WD (1986) Daphniopsis pusilla, a cladoceran of Australian salt lakes: recognition and ecological data for paleolimnologists. Palaeogeogr Palaeoclimateol Palaeoecol 54:305–316CrossRefGoogle Scholar
  62. Xu S, Hebert PDN, Kotov AA, Cristescu ME (2009) The noncosmopolitanism paradigm of freshwater zooplankton: insights from the global phylogeography of the predatory cladoceran Polyphemus pediculus (Linnaeus 1761) (Crustacea, Onychopoda). Mol Ecol 18:5161–5179CrossRefGoogle Scholar
  63. Xu L, Han B-P, Van Damme K, Vierstraete A, Vanfleteren JR, Dumont HJ (2011) Biogeography and evolution of the Holarctic zooplankton genus Leptodora (Crustacea: Branchiopoda: Haplopoda). J Biogeogr 38:359–370CrossRefGoogle Scholar
  64. Yan ND, Dunlop WI, Pawson TW, MacKay LE (1992) Bythotrephes cederstroemi (Schoedler) in Muskoka lakes: first records of the European invader in inland lakes in Canada. Can J Fish Aquat Sci 49:422–426CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Paleoecological Environmental Assessment and Research, Lab (PEARL), Department of BiologyQueen’s UniversityKingstonCanada

Personalised recommendations