Advertisement

Journal of Paleolimnology

, Volume 45, Issue 4, pp 399–404 | Cite as

Palaeolimnology and its developing role in assessing the history and extent of human impact on lake ecosystems

  • Richard W. Battarbee
  • Helen Bennion
Original paper

Abstract

This Special Issue was produced as an output from the EU Integrated Project Euro-limpacs which aimed to evaluate the impacts of global change on European freshwater ecosystems using a combination of approaches, including monitoring, experiments, modelling and palaeolimnology. The papers focus on the last of these approaches. They examine the role of lake sediment records in determining reference conditions for a range of environmental pressures including acidification, eutrophication, metal pollution, organic carbon and sediment accumulation rates. The findings are especially relevant to the European Union’s Water Framework Directive which requires an assessment of lake ecological status based on deviation from reference conditions. The contributions consider a range of issues relating to the use of palaeolimnological data in defining reference conditions and lake status including human versus natural variability, concepts of pristine and reference conditions, shifting baselines, and quantification of degree of change. This introductory paper sets the context for the volume by briefly describing how palaeolimnology has evolved as a science, able now to contribute uniquely to the understanding of lake ecosystem change, especially with respect to the role of human activity over recent decades and centuries.

Keywords

Palaeolimnology Reference conditions Restoration targets Eutrophication Acidification Water Framework Directive 

Notes

Acknowledgments

We would like to thank John Birks and John Smol for their comments on the manuscript and Katy Wilson for help with technical editing. The papers in this special issue are based on research funded by the EU Integrated Project Euro-limpacs (GOCE-CT-2003-505540).

References

  1. Atkinson KM, Haworth EY (1990) Devoke water and Loch Sionascaig: recent environmental changes and the post-glacial overview. Philos Trans R Soc Lond Ser B Biol Sci 327:349–355CrossRefGoogle Scholar
  2. Battarbee RW (1973) A new method for estimating absolute microfossil numbers, with special reference to diatoms. Limnol Oceanogr 18:647–653CrossRefGoogle Scholar
  3. Battarbee RW (1978) Observations on the recent history of Lough Neagh and its drainage basin. Philos Trans R Soc Lond Ser B Biol Sci 281:303–345CrossRefGoogle Scholar
  4. Battarbee RW (1991) Recent palaeolimnology and diatom-based environmental reconstruction. In: Shane LCK, Cushing EJ (eds) Quaternary landscapes. University of Minnesota Press, Minneapolis, pp 129–174Google Scholar
  5. Battarbee RW (1999) The importance of palaeolimnology to lake restoration. Hydrobiologia 395(396):149–159CrossRefGoogle Scholar
  6. Battarbee RW, Anderson NJ, Jeppesen E, Leavitt PR (2005a) Combining palaeolimnological and limnological approaches in assessing lake ecosystem response to nutrient reduction. Freshwat Biol 50:1772–1780CrossRefGoogle Scholar
  7. Battarbee RW, Monteith DT, Juggins S, Evans CD, Jenkins A, Simpson GL (2005b) Reconstructing pre-acidification pH for an acidified Scottish loch: a comparison of palaeolimnological and modelling approaches. Environ Pollut 137:135–149CrossRefGoogle Scholar
  8. Battarbee RW, Monteith DT, Juggins S, Simpson GL, Shilland EM, Flower RJ, Kreiser AM (2008) Assessing the accuracy of diatom-based transfer functions in defining reference pH conditions for acidified lakes in the United Kingdom. Holocene 8:57–67CrossRefGoogle Scholar
  9. Battarbee RW, Simpson GL, Bennion H, Curtis C (2010a) A reference typology of low alkalinity lakes in the UK based on pre-acidification diatom assemblages from lake sediment cores. J Paleolimnol (this issue). doi: 10.1007/s10933-010-9426-4
  10. Battarbee RW, Morley D, Bennion H, Simpson GL, Hughes M, Bauere V (2010b) A palaeolimnological meta-database for assessing the ecological status of lakes. J Paleolimnol (this issue). doi: 10.1007/s10933-010-9417-5
  11. Bennion H, Battarbee RW (2007) The European Union Water Framework Directive: opportunities for palaeolimnology. J Paleolimnol 38:285–295CrossRefGoogle Scholar
  12. Bennion H, Simpson GL (2010) The use of diatom records to establish reference conditions for UK lakes subject to eutrophication. J Paleolimnol (this issue). doi: 10.1007/s10933-010-9422-8
  13. Bennion H, Wunsam S, Schmidt R (1995) The validation of diatom-phosphorus transfer functions: an example from Mondsee, Austria. Freshwat Biol 34:271–283CrossRefGoogle Scholar
  14. Bennion H, Juggins S, Anderson NJ (1996) Predicting epilimnetic phosphorus concentrations using an improved diatom-based transfer function and its application to lake eutrophication management. Environ Sci Technol 30:2004–2007CrossRefGoogle Scholar
  15. Bennion H, Monteith DT, Appleby P (2000) Temporal and geographical variation in lake trophic status in the English Lake District: evidence from (sub)fossil diatoms and aquatic macrophytes. Freshwat Biol 45:394–412CrossRefGoogle Scholar
  16. Bennion H, Fluin J, Simpson GL (2004) Assessing eutrophication and reference conditions for Scottish freshwater lochs using subfossil diatoms. J Appl Ecol 41:124–138CrossRefGoogle Scholar
  17. Bennion H, Johnes P, Ferrier R, Phillips G, Haworth EY (2005) A comparison of diatom phosphorus transfer functions and export coefficient models as tools for reconstructing lake nutrient histories. Freshwat Biol 50:1651–1670CrossRefGoogle Scholar
  18. Bennion H, Battarbee RW, Sayer CD, Simpson GL, Davidson TA (2010a) Defining reference conditions and restoration targets for lake ecosystems using palaeolimnology: a synthesis. J Paleolimnol (this issue). doi: 10.1007/s10933-010-9419-3
  19. Bennion H, Simpson GL, Anderson NJ, Clarke G, Dong X, Hobæk A, Guilizzoni P, Marchetto A, Sayer CD, Thies H, Tolotti M (2010b) Defining ecological and chemical reference conditions and restoration targets for nine European lakes. J Paleolimnol (this issue). doi: 10.1007/s10933-010-9418-4
  20. Bindler R, Rydberg J, Renberg I (2010) Establishing natural sediment reference conditions for metals and the legacy of long-range and local pollution on lakes in Europe. J Paleolimnol (this issue). doi: 10.1007/s10933-010-9425-5
  21. Birks HH, Whiteside MC, Stark DM, Bright RC (1976) Recent palaeolimnology of three lakes in northwestern Minnesota. Quatern Res 6:249–272CrossRefGoogle Scholar
  22. Birks HJB, Line JM, Juggins S, Stevenson AC, ter Braak CJF (1990) Diatoms and pH reconstruction. Philos Trans R Soc Lond Ser B Biol Sci 327:263–278CrossRefGoogle Scholar
  23. Bradbury JP (1975) Diatom stratigraphy and human settlement in Minnesota. Geological Society of America, Special Paper 171Google Scholar
  24. Bradshaw EG, Rasmussen P, Nielsen H, Anderson NJ (2005) Mid- to late-Holocene land use and lake development at Dallund Sø, Denmark: trends in lake primary production as reflected by algal and macrophyte remains. Holocene 15:1130–1142CrossRefGoogle Scholar
  25. Catalan J, Pla S, Rieradevall M, Felip M, Ventura M, Buchaca T, Camarero L, Brancelj A, Appleby PG, Lami A, Grytnes JA, Agustí-Panareda A, Thompson R (2002) Lake Redó ecosystem response to an increasing warming the Pyrenees during the twentieth century. J Paleolimnol 28:129–145CrossRefGoogle Scholar
  26. Cunningham L, Bishop K, Mettävainio E, Rosén P (2010) Paleoecological evidence of major declines in total organic carbon concentrations since the nineteenth century in four nemoboreal lakes. J Paleolimnol (this issue). doi: 10.1007/s10933-010-9420-x
  27. Deevey ES (1942) Studies on Connecticut lake sediments. III. The biostratonomy of Linsley Pond. Am J Sci 240:233–264CrossRefGoogle Scholar
  28. Deevey ES (1955) The obliteration of the hypolimnion. Mem Ist Ital Idrobiol 8:9–38Google Scholar
  29. Deevey ES (1984) Stress, strain and stability in lacustrine ecosystems. In: Haworth EY, Lund JWG (eds) Lake sediments and environmental history. Leicester University Press, Leicester, pp 203–229Google Scholar
  30. Digerfeldt G (1972) The post-glacial development of Lake Trummen: regional vegetation history, water level changes and palaeolimnology. Folia Limnol Scandinavica 16:1–104Google Scholar
  31. Edmondson WT (1961) Changes in Lake Washington following an increase in the nutrient income. Verh Int Verg Limnol 14:167–175Google Scholar
  32. Engstrom DR, Wright HE Jr (1984) Chemical stratigraphy of lake sediments as a record of environmental change. In: Haworth EY, Lund JWG (eds) Lake sediments and environmental history. Leicester University Press, Leicester, pp 11–67Google Scholar
  33. Guilizzoni P, Marchetto A, Lami A, Gerli S, Musazzi S (2010) Use of sedimentary pigments to infer past phosphorus concentration in lakes. J Paleolimnol (this issue). doi: 10.1007/s10933-010-9421-9
  34. Hall RI, Smol JP (1999) Diatoms as indicators of lake eutrophication. In: Stoermer EF, Smol JP (eds) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge, pp 128–168Google Scholar
  35. Hasler AD (1947) Eutrophication of lakes by domestic sewage. Ecology 28:383–395CrossRefGoogle Scholar
  36. Haworth EY (1969) The diatoms of a sediment core from Blea Tarn, Langdale. J Ecol 57:429–439CrossRefGoogle Scholar
  37. Hutchinson GE, Wollack A (1940) Studies on Connecticut lake sediments. II. Chemical analyses of a core from Linsley Pond, North Branford. Am J Sci 238:493–517CrossRefGoogle Scholar
  38. Huttunen P, Meriläinen J, Tolonen K (1978) The history of a small dystrophied forest lake, Southern Finland. Pol Arch Hydrobiol 25:189–202Google Scholar
  39. Jones VJ, Stevenson AC, Battarbee RW (1989) Acidification of lakes in Galloway, south west Scotland: a diatom and pollen study of the post-glacial history of the Round Loch of Glenhead. J Ecol 77:1–23CrossRefGoogle Scholar
  40. Last W, Smol JP (eds) (2001) Tracking environmental change using lake sediments. Vol 1: Basin analysis, coring and chronological techniques. Kluwer, DordrechtGoogle Scholar
  41. Livingstone DA (1957) On the sigmoid growth phase in the history of Linsley Pond. Am J Sci 255:364–373CrossRefGoogle Scholar
  42. Lundquist G (1927) Bodenablagerungen und Entwicklungstypen der Seen. In: Thienemann A (ed) Die Binnengewasser 2. StuttgartGoogle Scholar
  43. Mackereth FJH (1965) Chemical investigations of lake sediments and their interpretation. Proc R Soc Lond Ser B Biol Sci 161:295–309CrossRefGoogle Scholar
  44. Mackereth FJH (1966) Some chemical observations on postglacial sediments. Philos Trans R Soc Lond Ser B Biol Sci 250:165–213CrossRefGoogle Scholar
  45. Naumann E (1919) Några synpunkter angående planktons ökologi. Med särskild hänsyn till fytoplankton. Sven Bot Tidskr 13:129–158Google Scholar
  46. Nipkow F (1920) Vorlufige Mitteilungen ber Untersuchungen des Schlammabsatzes im Zürichsee. Z Hydrol l:101–123Google Scholar
  47. Nipkow F (1927) Über das Verhalten der Skelette planktischer Kieselalgen im geschichteten Tiefenschlamm des Ziirich-und Baldeggersees. Z Hydrol 4:71–120Google Scholar
  48. Norton SA, Bienert RW Jr, Binford MW, Kahl JS (1982) Stratigraphy of total metals in PIRLA sediment cores. J Paleolimnol 7:191–214Google Scholar
  49. Ohle W (1953) Der Vorgang rasanter Seenalterung in Holstein. Die Naturwissenschaften 40:153–162CrossRefGoogle Scholar
  50. Patrick R (1943) The diatoms of Linsley Pond, Connecticut. Proc Natl Acad Sci USA 95:53–110Google Scholar
  51. Pearsall WH (1921) The development of vegetation in the English Lakes, considered in relation to the general evolution of glacial lakes and rock basins. Philos Trans R Soc Lond Ser B Biol Sci 92:259–284CrossRefGoogle Scholar
  52. Pennington W (1943) Lake sediments: the bottom deposits of the north basin of Windermere, with special reference to the diatom succession. New Phytol 42:1–27CrossRefGoogle Scholar
  53. Pennington W, Cranwell PA, Haworth EY, Bonny AP, Lishman JP (1977) Interpreting the environmental record in the sediments of Blelham Tarn. Report of the Freshwater Biological Association 45:37–47Google Scholar
  54. Pollard P, Huxham M (1998) The European Water Framework Directive: a new era in the management of aquatic ecosystem health? Aquat Conserv Mar Freshwat Ecosyst 8:773–792CrossRefGoogle Scholar
  55. Quennerstedt N (1955) Diatoméerna i Långans sjövegetation. Acta Phytogeograph Suecica 36:1–208Google Scholar
  56. Renberg I (1990) A 12, 600 year perspective of the acidification of Lilla Öresjön, southwest Sweden. Philos Trans R Soc Lond Ser B Biol Sci 327:357–361CrossRefGoogle Scholar
  57. Rippey B (1990) Sediment chemistry and atmospheric contamination. Philos Trans R Soc Lond Ser B Biol Sci 327:311–317CrossRefGoogle Scholar
  58. Rose NL, Morley D, Appleby PG, Battarbee RW, Alliksaar T, Guilizzoni P, Jeppesen E, Korhola A, Punning JM (2010) Sediment accumulation rates in European lakes since AD 1850: trends, reference conditions and exceedence. J Paleolimnol (this issue). doi: 10.1007/s10933-010-9424-6
  59. Round F (1957) The late-glacial diatom succession in the Kentmere Valley deposit. Part I. Introduction, methods and flora. New Phytol 56:98–126CrossRefGoogle Scholar
  60. Smol JP (1992) Paleolimnology: an important tool for effective ecosystem management. J Aquat Ecosyst Health 1:49–58CrossRefGoogle Scholar
  61. Smol JP (2008) Pollution of Lakes and Rivers: a Paleoenvironmental perspective, 2nd edn. Blackwell, Oxford 383 ppGoogle Scholar
  62. Smol JP, Birks HJB, Last WM (eds) (2001a) Tracking environmental change using lake sediments: terrestrial, algal, and siliceous indicators. Kluwer, DordrechtGoogle Scholar
  63. Smol JP, Birks HJB, Last WM (eds) (2001b) Tracking environmental change using lake sediments: zoological indicators. Kluwer, DordrechtGoogle Scholar
  64. Smol JP, Wolfe AP, Birks HJB, Douglas M, Jones VJ, Korhola A, Pienitz R, Ruhland K, Sorvari S, Antoniades D, Brooks SJ, Fallu MA, Hughes M, Keatley BE, Laing TE, Michelutti N, Nazarova L, Nyman M, Paterson AM, Perren B, Quinlan R, Rautio M, Saulnier-Talbot E, Siitonen S, Solovieva N, Weckstrom J (2005) Climate-driven regime shifts in the biological communities of arctic lakes. Proc Natl Acad Sci USA 102:4397–4402CrossRefGoogle Scholar
  65. Stockner JG, Benson WW (1967) The succession of diatom assemblages in the recent sediment of Lake Washington. Limnol Oceanogr 12:512–532Google Scholar
  66. Thienemann A (1925) Die Binnengewässer Mitteleuropas: Eine limnologische Einführung. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart: EGoogle Scholar
  67. Thomas EA (1957) Der Zürichsee, sein Wasser und sein Boden. Jb vom Zürichsee 17:173–208Google Scholar
  68. Whitehead DR, Charles DF, Reed SE, Jackson ST, Sheehan MC (1986) Late-glacial and holocene acidity changes in Adirondack (NY) lakes. In: Smol JP, Battarbee RW, Davis RB, Meriläinen J (eds) Diatoms and lake acidity. Dordrecht, The Netherlands, pp 251–274Google Scholar
  69. Wolfe AP, Baron JS, Cornett RJ (2001) Anthropogenic nitrogen deposition induces rapid ecological change in alpine lakes of the Colorado Front Range (USA). J Paleolimnol 25:1–7CrossRefGoogle Scholar
  70. Züllig H (1956) Sedimente als Ausdruck des Zustandes eines Gewassers. Schweiz Zeitschrift Hydrologie 18:5–143CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Environmental Change Research CentreUniversity College LondonLondonUK

Personalised recommendations