Skip to main content
Log in

The use of diatom records to establish reference conditions for UK lakes subject to eutrophication

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

A knowledge of pre-disturbance conditions is important for setting realistic restoration targets for lakes. For European waters this is now a requirement of the European Council Water Framework Directive where ecological status must be assessed based on the degree to which present day conditions deviate from reference conditions. Here, we employ palaeolimnological techniques, principally inferences of total phosphorus from diatom assemblages (DI-TP) and classification of diatom composition data from the time slice in sediment cores dated to ~1850 AD, to define chemical and ecological reference conditions, respectively, for a range of UK lake types. The DI-TP results from 169 sites indicate that reference TP values for low alkalinity lakes are typically <10 μg L−1 and in many cases <5 μg L−1, whilst those for medium and high alkalinity lakes are in the range 10–30 and 20–40 μg L−1, respectively. Within the latter two alkalinity types, the deeper waters (>3 m mean depth) generally had lower reference TP concentrations than the shallow sites. A small group of shallow marl lakes had concentrations of ~30 μg L−1. Cluster analysis of diatom composition data from 106 lakes where the key pressure of interest was eutrophication identified three clusters, each associated with particular lake types, suggesting that the typology has ecological relevance, although poor cross matching of the diatom groups and the lake typology at type boundaries highlights the value of a site-specific approach to defining reference conditions. Finally the floristic difference between the reference and present day (surface sample) diatom assemblages of each site was estimated using the squared chord distance dissimilarity coefficient. Only 25 of the 106 lakes experienced insignificant change and the findings indicate that eutrophication has impacted all lake types with >50% of sites exhibiting significant floristic change. The study illustrates the role of the sediment record in determining both chemical and ecological reference conditions, and assessing deviation from the latter. Whilst restoration targets may require modification in the future to account for climate induced alterations, the long temporal perspective offered by palaeolimnology ensures that such changes are assessed against a sound baseline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson NJ (1995) Using the past to predict the future: lake sediments and the modelling of limnological disturbance. Ecol Model 78:149–172

    Article  Google Scholar 

  • Anderson NJ (1997) Historical changes in epilimnetic phosphorus concentrations in six rural lakes in Northern Ireland. Freshwat Biol 38:427–440

    Article  Google Scholar 

  • Anderson NJ, Rippey B, Gibson CE (1993) A comparison of sedimentary and diatom-inferred phosphorus profiles: implications for defining pre-disturbance nutrient conditions. Hydrobiologia 253:357–366

    Article  Google Scholar 

  • Anderson NJ, Jeppesen E, Søndergaard M (2005) Ecological effects of reduced nutrient loading (oligotrophication) on lakes: an introduction. Freshwat Biol 50:1589–1593

    Article  Google Scholar 

  • Appleby PG, Nolan PJ, Gifford DW, Godfrey MJ, Oldfield F, Anderson NJ, Battarbee RW (1986) 210Pb dating by low background gamma counting. Hydrobiologia 141:21–27

    Article  Google Scholar 

  • Battarbee RW (1999) The importance of paleolimnology to lake restoration. Hydrobiologia 395(396):149–159

    Article  Google Scholar 

  • Battarbee RW, Jones VJ, Flower RJ, Cameron NG, Bennion H, Carvalho L, Juggins S (2001a) Diatoms. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Vol 3: terrestrial, algal, and siliceous indicators. Kluwer, Dordrecht, pp 155–202

    Google Scholar 

  • Battarbee RW, Juggins S, Gasse F, Anderson NJ, Bennion H, Cameron NG, Ryves DB, Pailles C, Chalie F, Telford R (2001b) European diatom database (EDDI). An information system for palaeoenvironmental reconstruction. ECRC Research Report No 81, University College London, 94 pp

  • Battarbee RW, Anderson NJ, Jeppesen E, Leavitt PR (2005) Combining palaeolimnological and limnological approaches in assessing lake ecosystem response to nutrient reduction. Freshwat Biol 50:1772–1780

    Article  Google Scholar 

  • Battarbee RW, Morley D, Bennion H, Simpson GL, Hughes M, Bauere V (2010) A palaeolimnological meta-database for assessing the ecological status of lakes. J Paleolimnol (this issue). doi:10.1007/s10933-010-9417-5

  • Bennion H (1994) A diatom-phosphorus transfer function for shallow, eutrophic ponds in south-east England. Hydrobiologia 275(6):391–410

    Article  Google Scholar 

  • Bennion H (1995) Surface sediment diatom assemblages in shallow, artificial, enriched ponds, and implications for reconstructing trophic status. Diatom Res 10:1–19

    Google Scholar 

  • Bennion H, Battarbee R (2007) The European union Water Framework Directive: opportunities for palaeolimnology. J Paleolimnol 38:285–295

    Article  Google Scholar 

  • Bennion H, Juggins S, Anderson NJ (1996a) Predicting epilimnetic phosphorus concentrations using an improved diatom-based transfer function and its application to lake eutrophication management. Environ Sci Technol 30:2004–2007

    Article  Google Scholar 

  • Bennion H, Duigan CA, Haworth EY, Allott TEH, Anderson NJ, Juggins S, Monteith DM (1996b) The Anglesey lakes, Wales, UK—changes in trophic status of three standing waters as inferred from diatom transfer functions and their implications for conservation. Aquat Conserv Mar: Freshwat Ecosyst 6:81–92

    Article  Google Scholar 

  • Bennion H, Appleby PG, Phillips GL (2001) Reconstructing nutrient histories in the Norfolk Broads, UK: implications for the role of diatom-total phosphorus transfer functions in shallow lake management. J Paleolimnol 26:181–204

    Article  Google Scholar 

  • Bennion H, Fluin J, Simpson GL (2004) Assessing eutrophication and reference conditions for Scottish freshwater lochs using subfossil diatoms. J Appl Ecol 41:124–138

    Article  Google Scholar 

  • Bennion H, Johnes P, Ferrier R, Phillips G, Haworth E (2005) A comparison of diatom phosphorus transfer functions and export coefficient models as tools for reconstructing lake nutrient histories. Freshwat Biol 50:1651–1670

    Article  Google Scholar 

  • Birks HJB (1998) Numerical tools in palaeolimnology—progress, potentialities, and problems. J Paleolimnol 20:307–332

    Article  Google Scholar 

  • Bradshaw EG, Anderson NJ (2001) Validation of a diatom-phosphorus calibration set for Sweden. Freshwat Biol 46:1035–1048

    Article  Google Scholar 

  • Bradshaw EG, Nielsen AB, Anderson NJ (2006) Using diatoms to assess the impacts of prehistoric, pre-industrial and modern land-use on Danish lakes. Reg Environ Change 6:17–24

    Article  Google Scholar 

  • Cardoso AC, Solimini A, Premazzi G, Carvalho L, Lyche A, Rekolainen S (2007) Phosphorus reference concentrations in European lakes. Hydrobiol 584:3–12

    Article  Google Scholar 

  • Carpenter SR (2005) Eutrophication of aquatic ecosystems: bistability and soil phosphorus. Proc Natl Acad Sci USA 102:10002–10005

    Article  Google Scholar 

  • Carrick HJ, Worth D, Marshall ML (1994) The influence of water circulation on chlorophyll-turbidity relationships in Lake Okeechobee as determined by remote-sensing. J Plankton Res 16:1117–1135

    Article  Google Scholar 

  • Carvalho L, Solimini A, Phillips G, van den Berg M, Pietiläinen O-P, Lyche Solheim A, Poikane S, Mischke U (2008) Chlorophyll reference conditions for European lake types used for intercalibration of ecological status. Aquat Ecol 42:203–211

    Article  Google Scholar 

  • Chen G, Dalton C, Leira M, Taylor D (2008) Diatom-based total phosphorus (TP) and pH transfer functions for the Irish Ecoregion. J Paleolimnol 40:143–163

    Article  Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • European Union (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 20000 establishing a framework for community action in the field of water policy. Off J Eur Commun L327:1–72

    Google Scholar 

  • Fozzard IR, Doughty CR, Ferrier RC, Leatherland TM, Owen R (1999) A quality classification for management of Scottish standing waters. Hydrobiologia 395(396):433–453

    Article  Google Scholar 

  • Hall RI, Smol JP (1999) Diatoms as indicators of lake eutrophication. In: Stoermer EF, Smol JP (eds) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge, pp 128–168

    Google Scholar 

  • Holdren GC, Armstrong DE (1980) Factors affecting phosphorus release from intact sediment cores. Environ Sci Technol 14:79–87

    Article  Google Scholar 

  • Hutchinson GE (1969) Eutrophication, past and present. In: Rohlich GA (ed) Eutrophication: causes, consequences and correctives. National Academy of Sciences, Washington, pp 17–26

    Google Scholar 

  • Jeppesen E, Søndergaard M, Meerhoff M, Lauridsen TL, Jensen JP (2007) Shallow lake restoration by nutrient loading reduction—some recent findings and challenges ahead. Hydrobiologia 584:239–252

    Article  Google Scholar 

  • Juggins S (2003) C2 User guide. Software for ecological and palaeoecological data analysis and visualisation. University of Newcastle, Newcastle upon Tyne, 69 pp

  • Kauppila T, Moisio T, Salonen VP (2002) A diatom-based inference model for autumn epilimnetic total phosphorus concentration and its application to a presently eutrophic boreal lake. J Paleolimnol 27:261–273

    Article  Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  Google Scholar 

  • Lotter AF, Birks HJB, Hofmann W, Marchetto A (1998) Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. J Paleolimnol 19:443–463

    Article  Google Scholar 

  • Minchin PR (1987) An evaluation of relative robustness of techniques for ecological ordinations. Vegetatio 71:145–156

    Google Scholar 

  • Moss B (1998) Shallow lakes: biomanipulation and eutrophication. SCOPE Newslett 29:45

    Google Scholar 

  • Moss B, McGowan S, Carvalho L (1994) Determination of phytoplankton crops by top-down and bottom-up mechanisms in a group of English lakes, the West Midland Meres. Limnol Oceanogr 39:1020–1029

    Article  Google Scholar 

  • Moss B, Johnes P, Phillips G (1997) New approaches to monitoring and classifying standing waters. In: Boon PJ, Howell CL (eds) Freshwater quality: defining the indefinable. HMSO, Edinburgh, pp 118–133

    Google Scholar 

  • Moss B, Stephen D, Alvarezn C, Becares E, Van der Bund W, Collings SE et al (2003) The determination of ecological status in shallow lakes—a tested system (ECOFRAME) for implementation of the European Water Framework Directive. Aquat Conserv Mar: Freshwat Ecosyst 13:507–549

    Article  Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Stevens MHH (2008) Vegan: community ecology package. R package version 1.11-5. http://cran.r-project.org/ http://vegan.r-forge.r-project.org/

  • Organisation for Economic Co-operation and Development, OECD (1982) Eutrophication of waters: monitoring, assessment and control. Technical Report, Environmental Directorate, OECD, Paris, 154 pp

  • Overpeck JT, Webb T, Prentice IC (1985) Quantitative interpretation of fossil pollen spectra - dissimilarity coefficients and the method of modern analogs. Quatern Res 23:87–108

    Article  Google Scholar 

  • Phillips G (2003) Reporting typology for Ecoregion 18, Great Britain. TAG/LTT 43, March 2003

  • Phillips G, Pietiläinen O-P, Carvalho L, Solimini A, Lyche Solheim A, Cardoso AC (2008) Chlorophyll—nutrient relationships of different lake types using a large European dataset. Aquat Ecol 42:213–226

    Article  Google Scholar 

  • Pollard P, Huxham M (1998) The European Water Framework Directive: a new era in the management of aquatic ecosystem health? Aquat Conserv Mar: Freshwat Ecosyst 8:773–792

    Article  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL: http://www.R-project.org

  • Roberts DW (2007) Labdsv: ordination and multivariate analysis for ecology. R package version 1.3-1. http://ecology.msu.montana.edu/labdsv/R

  • Rose NL, Harlock S, Appleby PG, Battarbee RW (1995) The dating of recent lake sediments in the United Kingdom and Ireland using spheroidal carbonaceous particle concentration profiles. The Holocene 5:328–335

    Article  Google Scholar 

  • Rose NL, Morley D, Appleby PG, Battarbee RW, Alliksaar T, Guilizzoni P, Jeppesen E, Korhola A, Punning JM (2010) Sediment accumulation rates in European lakes since AD 1850: Trends, reference conditions and exceedence. J Paleolimnol (this issue). doi:10.1007/s10933-010-9424-6

  • Sayer C (2001) Problems with the application of diatom-total phosphorus transfer functions: examples from a shallow English lake. Freshwat Biol 46:743–757

    Article  Google Scholar 

  • Simpson GL (2007a) Analogue: analogue matching and modern analogue technique transfer function models. R package version 0.5-2. http://analogue.r-forge.r-project.org/

  • Simpson GL (2007b) Analogue methods in palaeoecology: using the analogue package. J Stat Softw 22:1–29

    Google Scholar 

  • Simpson GL, Shilland EM, Winterbottom JM, Keay J (2005) Defining reference conditions for acidified waters using a modern analogue approach. Environ Pollut 137:119–133

    Article  Google Scholar 

  • Smith VH, Joye SB, Howarth RW (2006) Eutrophication of freshwater and marine ecosystems. Limnol Oceanogr 51:351–355

    Article  Google Scholar 

  • Smol JP (2008) Pollution of lakes and rivers: a paleoenvironmental perspective, 2nd edn. Blackwell, Oxford, 383 pp

  • Solheim AL, Gulati RD (2008) Preface: quantitative ecological responses for the Water Framework Directive related to eutrophication and acidification of European lakes. Aquat Ecol 42:179–181

    Article  Google Scholar 

  • Søndergaard M, Jeppesen E, Jensen JP, Amsinck SL (2005) Water Framework Directive: ecological classification of Danish lakes. J Appl Ecol 42:616–629

    Article  Google Scholar 

  • Søndergaard M, Jeppesen E, Lauridsen T, Van Nes SCH, Roijackers R, Lammens E, Portielje R (2007) Lake restoration: successes, failures and long-term effects. J Appl Ecol 44:1095–1105

    Article  Google Scholar 

  • Stoermer EF, Smol JP (eds) (1999) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge

    Google Scholar 

  • Taylor D, Dalton C, Leira M, Jordan P, Chen G, León-Vintró L, Irvine K, Bennion H, Nolan T (2006) Recent histories of six productive lakes in the Irish Ecoregion based on multiproxy palaeolimnological evidence. Hydrobiologia 571:237–259

    Article  Google Scholar 

  • ter Braak CJF, Juggins S (1993) Weighted averaging partial least squares (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269(270):485–502

    Article  Google Scholar 

  • ter Braak CJF, van Dam H (1989) Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia 178:209–223

    Article  Google Scholar 

  • Vighi M, Chiaudani G (1985) A simple method to estimate lake phosphorus concentrations resulting from natural, background, loadings. Water Res 19:987–991

    Article  Google Scholar 

  • Vollenweider RA (1968) Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication. Technical Report DAS/CSI/68 27, OECD, Paris, 159 pp

  • Wunsam S, Schmidt R (1995) A diatom-phosphorus transfer function for Alpine and pre-alpine lakes. Mem Ist Ital Idrobiol 53:85–99

    Google Scholar 

Download references

Acknowledgments

This paper was written with support from the European Union (FP6 Integrated Project ‘Euro-limpacs: European project to evaluate impacts of global change on freshwater ecosystems’ GOCE-CT-2003-505540) and the Scotland and Northern Ireland Forum for Environmental Research (SNIFFER, project number WFD08). We are grateful to the reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen Bennion.

Appendices

Appendix 1

See Table 5.

Table 5 List of lake sample codes with full names, location and typology

Appendix 2

See Table 6.

Table 6 List of diatom codes with full names and authorities

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennion, H., Simpson, G.L. The use of diatom records to establish reference conditions for UK lakes subject to eutrophication. J Paleolimnol 45, 469–488 (2011). https://doi.org/10.1007/s10933-010-9422-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-010-9422-8

Keywords

Navigation