Journal of Paleolimnology

, Volume 44, Issue 1, pp 295–310 | Cite as

A paleoclimate record with tephrochronological age control for the last glacial-interglacial cycle from Lake Ohrid, Albania and Macedonia

  • Hendrik Vogel
  • Bernd Wagner
  • Giovanni Zanchetta
  • Roberto Sulpizio
  • Peter Rosén
Original paper


Lake Ohrid is probably of Pliocene age, and the oldest extant lake in Europe. In this study climatic and environmental changes during the last glacial-interglacial cycle are reconstructed using lithological, sedimentological, geochemical and physical proxy analysis of a 15-m-long sediment succession from Lake Ohrid. A chronological framework is derived from tephrochronology and radiocarbon dating, which yields a basal age of ca. 136 ka. The succession is not continuous, however, with a hiatus between ca. 97.6 and 81.7 ka. Sediment accumulation in course of the last climatic cycle is controlled by the complex interaction of a variety of climate-controlled parameters and their impact on catchment dynamics, limnology, and hydrology of the lake. Warm interglacial and cold glacial climate conditions can be clearly distinguished from organic matter, calcite, clastic detritus and lithostratigraphic data. During interglacial periods, short-term fluctuations are recorded by abrupt variations in organic matter and calcite content, indicating climatically-induced changes in lake productivity and hydrology. During glacial periods, high variability in the contents of coarse silt to fine sand sized clastic matter is probably a function of climatically-induced changes in catchment dynamics and wind activity. In some instances tephra layers provide potential stratigraphic markers for short-lived climate perturbations. Given their widespread distribution in sites across the region, tephra analysis has the potential to provide insight into variation in the impact of climate and environmental change across the Mediterranean.


Lake Ohrid Mediterranean Tephrochronology Paleolimnology Last glacial-interglacial cycle 



We would like to thank Goce Kostoski, Sasho Trajanoski, Zoran Spirkovski, and Zoran Brdaroski from the Hydrobiological Institute in Ohrid for logistical support during the 2007 field campaign. The field team was completed by Jens Aubel, Ariane Liermann, and Michael Fritz, who contributed greatly to the success of the 2007 coring campaign. Nicole Mantke and Florian Boxberg are warmly acknowledged for their assistance with laboratory work. Martin Melles gave valuable comments on an earlier version of the manuscript. Jane M Reed is warmly acknowledge for improving the language. The German Research Foundation (DFG) grant no. WA2109/1-1 provided financial support for the field campaign and analytical work on core Co1202.

Supplementary material

10933_2009_9404_MOESM1_ESM.tif (5.1 mb)
ESM1: Core photograph of the section between 630 and 530 cm showing the correlation of peak Mn (white line) and Fe (black line) intensities with concretionary horizons and laminations in core Co1202. The light red horizon between 620 and 617 cm represents tephra layer OT0702-4Supplementary material 1 (TIFF 5193 kb)


  1. Albanian geological survey (1999) Geological and mineral deposit map of Albania 1:200,000Google Scholar
  2. Albrecht C, Wilke T (2008) Ancient Lake Ohrid: biodiversity and evolution. Hydrobiol 615:103–140CrossRefGoogle Scholar
  3. Allen JRM, Huntley B (2009) Last Interglacial palaeovegetation, palaeoenvironments and chronology: a new record from Lago Grande di Monticchio, southern Italy. Quat Sci Rev doi: 10.1016/j.quascirev.200902.013
  4. Allen JRM, Brandt U, Brauer A, Hubberten H-W, Huntley B, Keller J, Kraml M, Mackensen A, Mingram J, Negendank JFW, Nowaczyk NR, Oberhänsli H, Watts WA, Wulf S, Zolitschka B (1999) Rapid environmental changes in southern Europe during the last glacial period. Nature 400:740–743CrossRefGoogle Scholar
  5. Allen JRM, Watts WA, McGee E, Huntley B (2002) Holocene environmental variability–the record from Lago Grande di Monticchio, Italy. Quat Intern 88:69–80CrossRefGoogle Scholar
  6. Anovski T, Andonovski B, Minceva B (1992) Study of the hydrological relationship between Lake Ohrid and Prespa. Proc Symp Isotope Techn Water Res Dev. IAEA, Vienna, Austria, March 1991Google Scholar
  7. Aritztegui D, Asioli A, Lowe JJ, Trincardi F, Vigliotti L, Tamburini F (2000) Palaeoclimate and the formation of Sapropel S1: inferences from Late Quaternary lacustrine and marine sequences in the central Mediterranean region. Palaeogeogr Palaeoclimatol Palaeoecol 158:215–240CrossRefGoogle Scholar
  8. Bar-Matthews M, Ayalon A, Kaufmann A, Wasserburg G (1999) The eastern Mediterrranean paleoclimate as a reflection of regional events: Soreq Cave, Israel. Earth Planet Sci Lett 166:85–95CrossRefGoogle Scholar
  9. Bar-Matthews M, Ayalon A, Kaufmann A (2000) Timing and hydrological conditions of Sapropel events in the Eastern Mediterranean, as evident from speleothems, Soreq cave, Israel. Chem Geol 169:145–156CrossRefGoogle Scholar
  10. Bassinot FC, Labeyrie LD, Vincent E, Quidelleur X, Shackleton NJ, Lancelot Y (1994) The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal. Earth Planet Sci Lett 126:91–108CrossRefGoogle Scholar
  11. Belmecheri S, Namiotko T, Robert C, von Grafenstein U, Danielopol DL (2009) Climate controlled ostracod preservation in Lake Ohrid (Albania, Macedonia). Palaeogeogr Palaeoclimatol Palaeoecol 277:236–245CrossRefGoogle Scholar
  12. Berger A, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quat Sci Rev 10:297–317CrossRefGoogle Scholar
  13. Bordon A, Peyron O, Lézine A-M, Brewer S, Fouache E (2009) Pollen-inferred Late-Glacial and Holocene climate in southern Balkans (Lake Maliq). Quat Intern 200:19–30CrossRefGoogle Scholar
  14. Brauer A, Allen JRM, Mingram J, Dulski P, Wulf S, Huntley B (2007) Evidence for last interglacial chronology and environmental change from Southern Europe. Proc Nat Acad Sci 104:450–455CrossRefGoogle Scholar
  15. Cohen AS (2003) Paleolimnology. The history and evolution of lake systems. Oxford University Press, New York, USAGoogle Scholar
  16. Colman SM, Peck JA, Karabanov EB, Carter SJ, Bradbury JP, King JW, Williams DF (1995) Continental climate response to orbital forcing from biogenic silica records in Lake Baikal. Nature 378:769–771CrossRefGoogle Scholar
  17. Croudace IW, Rindby A, Rothwell RG (2006) ITRAX: description and evaluation of a new multi-function X-ray core scanner. In: Rothwell RG New techniques in sediment core analysis. Geological Society, London, Special Publications, 267, pp 51–63Google Scholar
  18. Danzeglocke U, Jöris O, Weninger B (2008) CalPal-2007 online., accessed 2008-07-21
  19. Deike RG, Granina L, Callender E, McGee JJ (1997) Formation of ferric iron crusts in Quaternary sediments of Lake Baikal, Russia, and implications for paleoclimate. Mar Geol 139:21–46CrossRefGoogle Scholar
  20. Demory F, Oberhänsli H, Nowaczyk NR, Gottschalk M, Wirth R, Naumann R (2005) Detrital input and early diagenesis in sediments from Lake Baikal revealed by rock magnetism. Glob Planet Ch 46:145–166CrossRefGoogle Scholar
  21. Dilek Y, Furnes H, Shallo M (2007) Suprasubduction zone ophiolite formation along the periphery of Mesozoic Gondwana. Gondw Res 11:453–475CrossRefGoogle Scholar
  22. Drysdale R, Zanchetta G, Hellstrom JC, Fallick A, Zhao J-X (2005) Stalagmite evidence for the onset of the last interglacial in southern Europe at 129 ± 1 ka. Geophys Res Lett 32Google Scholar
  23. Fagel N, Alleman LY, Granina L, Hatert F, Thamo-Bozso E, Cloots R, André L (2005) Vivianite formation and distribution in Lake Baikal sediments. Glob Planet Ch 46:315–336CrossRefGoogle Scholar
  24. Giaccio B, Isaia R, Sulpizio R, Zanchetta G (2008) Explosive volcanism in the central Mediterranean area during the late Quaternary: linking sources and distal archives. Ed J Volcanol Geoth Res 177:v–viiCrossRefGoogle Scholar
  25. Granina L, Müller B, Wehrli B (2004) Origin and dynamics of Fe and Mn sedimentary layers in Lake Baikal. Chem Geol 205:55–72CrossRefGoogle Scholar
  26. Kotthoff U, Müller UC, Pross J, Schmiedl G, Lawson IT, van de Schootbrugge B, Schulz H (2008) Lateglacial and Holocene vegetation dynamics in the Aegean region: an integrated view based on pollen data from marine and terrestrial archives. The Holocene 18:1019–1032CrossRefGoogle Scholar
  27. Lawson IT, Frogley M, Bryant C, Preece R, Tzedakis P (2004) The Lateglacial and Holocene environmental history of the Ioannina basin, north-west Greece. Quat Sci Rev 23:1599–1625CrossRefGoogle Scholar
  28. Martrat B, Grimalt JO, Lopez-Martinez C, Cacho I, Sierro FJ, Flores JA, Zahn R, Canals M, Curtis JH, Hodell DA (2004) Abrupt temperature changes in the Western Mediterranean over the past 250, 000 years. Science 306:1762–1765CrossRefGoogle Scholar
  29. Matzinger A, Spirkovski Z, Patceva S, Wüest A (2006a) Sensitivity of ancient Lake Ohrid to local anthropogenic impacts and global warming. J Great Lakes Res 32:158–179CrossRefGoogle Scholar
  30. Matzinger A, Jordanoski M, Veljanoska-Sarafiloska E, Sturm M, Müller B, Wüest A (2006b) Is Lake Prespa jeopardizing the ecosystem of ancient Lake Ohrid? Hydrobiologica 553:89–109CrossRefGoogle Scholar
  31. Matzinger A, Schmid M, Veljanoska-Sarafiloska E, Patceva S, Guseska D, Wagner B, Müller B, Sturm M, Wüest A (2007) Eutrophication of ancient Lake Ohrid: global warming amplifies detrimental effects of increased nutrient inputs. Limnol Oceanogr 52:338–353Google Scholar
  32. Mayewski PA, Meeker LD, Twickler MS, Whitlow S, Yang Q, Lyons WB, Prentice M (1997) Major features and forcing of high-latitude northern hemisphere atmospheric circulation using a 100,000-year-long glaciochemical series. J Geophys Res 102(26):345–366Google Scholar
  33. McManus JF, Oppo DW, Cullen JL (1999) A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science 283:971–975CrossRefGoogle Scholar
  34. Melles M, Brigham-Grette J, Glushkova OY, Minyuk PS, Nowaczyk NR, Hubberten HW (2007) Sedimentary geochemistry of core PG1351 from Lake El’gygytgyn - a sensitive record of climate variability in the East Siberian Arctic during the past three glacial-interglacial cycles. J Paleolimnol 37:89–104CrossRefGoogle Scholar
  35. Minyuk PS, Brigham-Grette J, Melles M, Borkhodoev VY, Glushkova OY (2007) Inorganic geochemistry of El′gygytgyn Lake sediments (northeastern Russia) as an indicator of paleoclimatic change fort he last 250 kyr. J Paleolimnol 37:123–133CrossRefGoogle Scholar
  36. Müller J, Oberhänsli H, Melles M, Schwab M, Rachold V, Hubberten H-W (2001) Late Pliocene sedimentation in Lake Baikal: implications for climatic and tectonic change in SE Siberia. Palaeogeogr Palaeoclimatol Palaeoecol 174:305–326CrossRefGoogle Scholar
  37. Müller B, Wang Y, Wehrli B (2006) Cycling of calcite in hard water lakes of different trophic states. Limnol Oceanogr 51:1678–1688CrossRefGoogle Scholar
  38. Popovska C, Bonacci O (2007) Basic data on the hydrology of Lakes Ohrid and Prespa. Hydrol Proc 21:658–664CrossRefGoogle Scholar
  39. Roberts N, Jones MD, Benkaddour A, Eastwood WJ, Filippi ML, Frogley MR, Lamb HF, Leng MJ, Reed JM, Stein M, Stevens L, Valero-Garcés B, Zanchetta G (2008) Stable isotope records of Late Quaternary climate and hydrology from Mediterranean lakes: the ISOMED synthesis. Quat Sci Rev 27:2426–2441CrossRefGoogle Scholar
  40. Roelofs AK, Kilham P (1983) The diatom stratigraphy and paleoecology of Lake Ohrid, Yugoslavia. Palaeogeogr Palaeoclimatol Palaeoecol 42:225–245CrossRefGoogle Scholar
  41. Rohling EJ, Mayewski PA, Abu-Zied RH, Casford JSL, Hayes A (2002) Holocene atmosphere-ocean interactions: records from Greenland and the Aegean Sea. Clim Dyn 18:587–593CrossRefGoogle Scholar
  42. Rosén P, Vogel H, Cunningham L, Reuss N, Conley D, Persson P (2009) Fourier transform infrared spectroscopy, a new method for rapid determination of total organic carbon and inorganic carbon and opal concentrations in lake sediments. J Paleolimnol doi: 10.1007/s10933-009-9329-4
  43. Sánchez Goñi MF, Turon J-L, Eynaud F, Gendreau S (2000) European climatic response to millennial-scale changes in the atmosphere-ocean system during the last glacial period. Quat Res 54:394–403CrossRefGoogle Scholar
  44. Sangiorgi F, Capotondi L, Combourieu Nebout N, Vigliotti L, Brinkhuis H, Giunta S, Lotter AF, Morigi C, Negri A, Reichart G-J (2003) Holocene seasonal sea-surface temperature variations in the southern Adriatic Sea inferred from a multiproxy approach. J Quat Sci 18:723–732CrossRefGoogle Scholar
  45. Schaller T, Moor HC, Wehrli B (1997) Sedimentary profiles of Fe, Mn, V, Cr, As and Mo as indicators of benthic redox conditions in Baldeggersee. Aquat Sci 59:345–361CrossRefGoogle Scholar
  46. Spirkovski Z, Avramovski O, Kodzoman A (2001) Case report: watershed management in the Lake Ohrid region of Albania and Macedonia. Lakes Reservoirs: Res Manage 6:237–242CrossRefGoogle Scholar
  47. Stankovic S (1960) The Balkan Lake Ohrid and its living world. Monographiae Biologicae IX. Dr. W. Junk, Den Haag, The NetherlandsGoogle Scholar
  48. Tzedakis PC, Frogley MR, Heaton THE (2003) Last Interglacial conditions in southern Europe: evidence from Ioannina, northwest Greece. Global Planet Ch 36:157–170CrossRefGoogle Scholar
  49. Vogel H, Rosén P, Wagner B, Melles M, Persson P (2008) Fourier Transform Infrared Spectroscopy, a new cost-effective tool for quantitative analysis of biogeochemical properties in long sediment records. J Paleolimnol 40:689–702CrossRefGoogle Scholar
  50. Vogel H, Zanchetta G, Sulpizio R, Wagner B, Nowaczyk N (2009) A tephrostratigraphic record for the last glacial-interglacial cycle from Lake Ohrid, Albania and Macedonia. J Quat Sci doi: 10.1002/jqs.1311
  51. Wagner B, Sulpizio R, Zanchetta G, Wulf S, Wessels M, Daut G (2008a) The last 40 ka tephrostratigraphic record of Lake Ohrid, Albania and Macedonia: a very distal archive for ash dispersal from Italian volcanoes. J Volcanol Geotherm Res 177:71–80CrossRefGoogle Scholar
  52. Wagner B, Reicherter K, Daut G, Wessels M, Matzinger A, Schwalb A, Spirkovski Z, Sanxhaku M (2008b) The potential of Lake Ohrid for long-term palaeoenvironmental reconstructions. Palaeogeogr Palaeoclimatol Palaeoecol 259:341–356CrossRefGoogle Scholar
  53. Wagner B, Lotter AF, Nowaczyk N, Reed JM, Schwalb A, Sulpizio R, Valsecchi V, Wessels M, Zanchetta G (2009) A 40, 000-year record of environmental change from ancient Lake Ohrid (Albania and Macedonia). J Paleolimnol 41:407–430CrossRefGoogle Scholar
  54. Watzin MC, Puka V, Naumoski TB (2002) Lake Ohrid and its Watershed, State of the Environment Report. Lake Ohrid Conservation Project. Tirana, Albania and Ohrid, MacedoniaGoogle Scholar
  55. Wetzel RG (2001) Limnology. Academic Press, San Diego, LondonGoogle Scholar
  56. Wohlfarth B, Veres D, Ampel L, Lacourse T, Blaauw M, Preusser F, Andrieu-Ponel V, Kéravis D, Lallier-Vergès E, Björk S, Davies SM, de Beaulieu J-L, Risberg J, Hormes A, Kasper HU, Possnert G, Reille M, Thouveny N, Zander A (2008) Rapid ecosystem response to abrupt climate changes during the last glacial period in western Europe, 40–16 ka. Geology 36:407–410CrossRefGoogle Scholar
  57. Yancheva G, Nowaczyk NR, Mingram J, Dulski P, Schettler G, Negendank JFW, Liu J, Sigman DM, Peterson LC, Haug GH (2007) Influence of the intertropical convergence zone on the East Asian monsoon. Nature 445:74–77CrossRefGoogle Scholar
  58. Zanchetta G, Drysdale RN, Hellstrom JC, Fallick AE, Isola I, Gagan MK (2007) Enhanced rainfall in the Western Mediterranean during deposition of sapropel S1: stalagmite evidence from Corchia Cave (central Italy). Quat Sci Rev 26:279–286CrossRefGoogle Scholar
  59. Zolitschka B, Corbella H, Maidana N, Ohlendorf C (2006) Investigating maar formation and the climate history of southern Argentina–the Potrok Aike Maar Lake Sediment Archive Drilling Project (PASADO). Sci Drill 3:54–55Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Hendrik Vogel
    • 1
  • Bernd Wagner
    • 1
  • Giovanni Zanchetta
    • 2
    • 3
    • 4
  • Roberto Sulpizio
    • 5
  • Peter Rosén
    • 6
  1. 1.Institute of Geology and MineralogyUniversity of CologneKölnGermany
  2. 2.Dipartimento di Scienze della TerraUniversity of PisaPisaItaly
  3. 3.CNR-IGGPisaItaly
  4. 4.INGV-sez. PisaPisaItaly
  5. 5.CIRISIVU, c/o Dipartimento GeomineralogicoUniversity of BariBariItaly
  6. 6.Climate Impacts Research Centre (CIRC)Umeå UniversityAbiskoSweden

Personalised recommendations