Journal of Paleolimnology

, Volume 43, Issue 3, pp 463–474 | Cite as

Water and sediment chemistry of Lake Pumayum Co, South Tibet, China: implications for interpreting sediment carbonate

  • Jianting Ju
  • Li-ping Zhu
  • Junbo Wang
  • Manping Xie
  • Xiaolin Zhen
  • Yong Wang
  • Ping Peng
Original Paper


A combination of water and sediment chemistry was used to investigate carbonate production and preservation in Lake Pumayum Co (altitude 5,030 m a.s.l.), south Tibet, China. We compared the chemical composition of lake water in various parts of the lake with that of input rivers and found that the loss of Ca2+ results from calcite sedimentation induced by evaporation and biogenic precipitation. This is supported by evaporation data from the catchment and δ18O measurements on water. Results suggest that CaCO3 is the predominant carbonate in this lake. There is a positive correlation in the sediments among concentrations of total inorganic carbon (TIC), Ca, total organic carbon (TOC), and total nitrogen, confirming that most carbonates in sediment are endogenic. The Jiaqu River is the largest inflow to Lake Pumayum Co and has a strong influence on both lake water chemistry and sediment composition. The river and lake bathymetry influence carbonate sedimentation by affecting water flow velocity and growing conditions for macrophytes. Different carbon contents and relationships between TIC and TOC in the two long cores from different depths in the lake reveal that hypolimnetic conditions also influence carbonate precipitation and preservation.


Carbonate Lake sediments Tibetan Plateau Water chemistry Spatial distribution Lake Pumayum Co 



This study was supported by the National Natural Science Foundation of China (Grants No. 40871099), the National Basic Research Program of China (Grant No. 2005CB422002), and the Knowledge Innovation Project of the Chinese Academy of Sciences (KZCX2-YW-146-4). The authors thank two anonymous reviewers for the encouragement and constructive remarks. We also thank Ms. Margaret Joyner and Dr. Mark Brenner for help with improvement of the language. Thanks are also given to J. Gao, D. M Qu, and S. P. Gao from the Institute of Tibetan Plateau Research, Chinese Academy of Sciences, for their great help with laboratory work.


  1. AL-Mikhlafi AS, Das BK, Kaur P (2003) Water chemistry of Mansar Lake (India): an indication of source area weathering and seasonal variability. Environ Geol (Berl) 44:645–653. doi: 10.1007/s00254-003-0798-x CrossRefGoogle Scholar
  2. Bureau of Geology, Mineral Resources of Xizang Autonomous (1993) Region regional geology of Xizang (Tibet). Geological Publishing House, Beijing, p 142 (in Chinese)Google Scholar
  3. Callonnec LL, Person A, Renard M, Létolle R, Nebout N, Khelifa LB, Rubanov I (2005) Preliminary data on chemical changes in the Aral Sea during low-level periods from the last 9000 years. C R Geosci 337:1035–1044. doi: 10.1016/j.crte.2005.05.017 CrossRefGoogle Scholar
  4. Chen FH, Bloemendal J, Zhang PZ, Liu GX (1999) An 800 ky proxy record of climate from lake sediments of the Zoige Basin, eastern Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol 151:307–320. doi: 10.1016/S0031-0182(99)00032-2 CrossRefGoogle Scholar
  5. Chen FH, Zhu Y, Li JJ, Shi Q, Jin LY, Wünemann B (2001) Abrupt Holocene changes of the Asian monsoon at millennial- and centennial-scales: evidence from lake sediment document in Minqin Basin, NW China. Chin Sci Bull 46:1942–1947. doi: 10.1007/BF02901902 CrossRefGoogle Scholar
  6. Chen FH, Huang XZ, Zhang JW, Holmes JA, Chen JH (2006) Humid little ice age in arid central Asia documented by Bosten Lake, Xinjiang, China. Sci China Ser D-Earth Sci 49:128–129. doi: 10.1007/s11430-006-2027-4 Google Scholar
  7. Dean WE (1999) The carbon cycle and biogeochemical dynamics in lake sediments. J Paleolimnol 21:375–393. doi: 10.1023/A:1008066118210 CrossRefGoogle Scholar
  8. Duston NM, Owen RM, Wilkinson BH (1986) Water chemistry and sedimentological observations in Littlefield Lake, Michigan: implications for lacustrine marl deposition. Environ Geol Water Sci 8:229–236. doi: 10.1007/BF02524950 CrossRefGoogle Scholar
  9. Filippi ML, Lambert P, Hunziker JC, Kubler B (1998) Monitoring detrital input and resuspension effects on sediment trap material using mineralogy and stable isotopes (18O and 13C): the case of Lake Neuchâtel (Switzerland). Palaeogeogr Palaeoclimatol Palaeoecol P140:33–50. doi: 10.1016/S0031-0182(98)00040-6 CrossRefGoogle Scholar
  10. Gasse F, Anold M, Fontes JC, Fort M, Gibert E, Huc A, Li BY, Li YF, Liu Q, Mélières F, van Campo E, Wang FB, Zhang QS (1991) A 13000-year climate record from Western Tibet. Nature 353:742–745. doi: 10.1038/353742a0 CrossRefGoogle Scholar
  11. Groleau A, Sarazin G, Vincon-Leite B, Tassin B, Quiblier-Lloberas C (2000) Tracing calcite precipitation with specific conductance in a hard water alpine lake. Water Res 34:4151–4160. doi: 10.1016/S0043-1354(00)00191-3 CrossRefGoogle Scholar
  12. Gu ZL, Liu JQ, Yuan BY (1993) Monsoon variations of the Qinghai-Xizang plateau during the last 12, 000 years—geochemical evidence from the sediments in Siling Lake. Chin Sci Bull 38:577–581Google Scholar
  13. Guan ZH, Chen CY, Ou YX, Fan YQ, Zhang YS, Chen ZM, Bao SH, Cu YT, He XW, Zhang MT (1984) The rivers and lakes of Tibet. Science Press, Beijing, pp 162–168 (in Chinese)Google Scholar
  14. Handra BK (1972) Geochemistry of the Ganges River water. India Geohydro 8:71–78Google Scholar
  15. Jones BF, Bowser CJ (1978) The mineralogy and related chemistry of lake sediments. In: Lerman A (ed) Lakes—Chemistry, Geology, Physics. Springer, New York, pp 179–227Google Scholar
  16. Kelts K, Hsü KJ (1978) Freshwater carbonate sedimentation. In: Lerman A (ed) Lakes—Chemistry, Geology, Physics. Springer, New York, pp 295–321Google Scholar
  17. Kuchler-Krischun J, Kleiner J (1990) Heterogeneously nucleated calcite precipitation in Lake Constance. A short time resolution study. Aquat Sci 52:176–197. doi: 10.1007/BF00902379 CrossRefGoogle Scholar
  18. Kumke T, Schoonderwaldt A, Kiene U (2005) Spatial variability of sedimentological properties in a large Siberian lake. Aquat Sci 67:86–96. doi: 10.1007/s00027-004-0734-5 CrossRefGoogle Scholar
  19. Meyers PA, Ishiwatari R (1993) Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem 20:867–900. doi: 10.1016/0146-6380(93)90100-P CrossRefGoogle Scholar
  20. Mitamura O, Seike Y, Kondo K, Goto N, Anbutsu K, Akatsuka T, Kihira M, Tsering TQ, Nishimura M (2003) First investigation of ultraoligotrophic alpine Lake Puma Yum Co in the pre-Himalayas, China. Jap J Limnol 4:167–175. doi: 10.1007/s10201-003-0101-6 Google Scholar
  21. Murakami T, Terai T, Yoshiyama Y, Tezuka T, Zhu LP, Tetsuya M, Nishimura M (2007) The second investigation of Lake Puma Yum Co located in the Southern Tibetan Plateau, China. Jpn J Limnol 8:331–335. doi: 10.1007/s10201-007-0208-2 Google Scholar
  22. O’Sullivan PE (1983) Annually-laminated lake sediments and the study of Quaternary environmental changes—a review. Quat Sci Rev 1:245–313. doi: 10.1016/0277-3791(83)90008-2 CrossRefGoogle Scholar
  23. Oldfield F (1977) Lakes and their drainage basins as units of sediment-based ecological study. Prog Phys Geogr 3:460–504. doi: 10.1177/030913337700100303 CrossRefGoogle Scholar
  24. Sarin MM, Krishnaswami S, Dilli K, Somayajulu BLK, Moore WS (1989) Major ion chemistry of the Ganga–Brahmaputra river system: weathering processes and flux to the Bay of Bengal. Geochim Cosmochim Acta 53:997–1009. doi: 10.1016/0016-7037(89)90205-6 CrossRefGoogle Scholar
  25. Schmieder K, Piepho HP, Schröder HG (2005) Patterns of surface sediment composition and their contributing factors in the littoral zone of Lake Constance (Germany). Aquat Sci 67:326–336Google Scholar
  26. Shen J, Liu XQ, Wang SM, Matsumoto R (2005) Palaeoclimatic changes in the Qinghai Lake area during the last 18, 000 years. Quaternary Int 136:131–140. doi: 10.1016/j.quaint.2004.11.014 CrossRefGoogle Scholar
  27. Wang SM, Li JR (1991) Lacustrine sediments—an indicator of historical climatic variations—the case of Qinghai Lake and Daihai Lake. Chin Sci Bull 36:1364–1368Google Scholar
  28. Yin CL, Tian LD, Yu WS, Gong TL (2006) Variations of stable oxygen isotope in precipitation in the Basin of Yamzho Lake. J Glaciol Geocryol 28:919–924 in ChineseGoogle Scholar
  29. Zhu LP, Chen L, Li BY, Li YF, Xia WL, Li JG (2002) Environmental changes reflected by the lake sediments of the South Hongshan Lake, Northwest Tibet. Sci China Ser D-Earth Sci 45:430–439. doi: 10.1360/02yd9045 CrossRefGoogle Scholar
  30. Zhu LP, Zhang PZ, Xia WL, Li BY, Chen L (2003) 1400-year cold/warm fluctuations reflected by environmental magnetism of a lake sediment core from the Chen Co, Southern Tibet, China. J Paleolimnol 29:391–401. doi: 10.1023/A:1024440516843 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Jianting Ju
    • 1
    • 2
    • 3
  • Li-ping Zhu
    • 1
  • Junbo Wang
    • 1
  • Manping Xie
    • 1
  • Xiaolin Zhen
    • 1
  • Yong Wang
    • 1
  • Ping Peng
    • 1
  1. 1.Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
  2. 2.Institute of Geographical Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
  3. 3.Science in China PressBeijingChina

Personalised recommendations