Skip to main content
Log in

Potential of δ13C and δ15N of cladoceran subfossil exoskeletons for paleo-ecological studies

  • Original Paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Stable isotope analyses on cladoceran subfossil exoskeletons retrieved from sediment cores could allow the reconstruction of past changes in lake food webs provided the δ13C and δ15N values of the exoskeletons reflect those of the organisms’ whole body. The relationships between the C and N stable isotope compositions of the exoskeletons and those of the whole body were investigated for two freshwater cladoceran taxa (Bosmina sp. and Daphnia sp.) from modern samples. The C and N stable isotope compositions of the exoskeleton and those of the whole body were strongly correlated. Exoskeleton δ13C was similar to the whole body δ13C for both taxa. Daphnia exoskeletons were strongly depleted in 15N (−7.9‰) compared to the whole body. Stable isotope analyses were thereafter performed on cladoceran remains from five downcore samples from Lake Annecy, France. Results showed that Bosmina δ15N values increased by more than 4‰, between the early twentieth and twenty first centuries. Such changes might be the result of changes in nitrogen sources or cycling in the lake and/or of major shifts in Bosmina trophic position within the lake food web. This study sets up the potential of stable isotope analyses performed on cladoceran subfossil remains for paleo-ecological purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Alekseev V, Lampert W (2001) Maternal control of resting-egg production in Daphnia. Nature 414:899–901. doi:10.1038/414899a

    Article  Google Scholar 

  • Bosley KL, Wainright SC (1999) Effects of preservatives and acidification on the stable isotope ratios (15N/14N, 13C/12C) of two species of marine mammals. Can J Fish Aquat Sci 56:2181–2185. doi:10.1139/cjfas-56-11-2181

    Article  Google Scholar 

  • Cabana G, Rasmussen JB (1994) Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature 372:255–257. doi:10.1038/372255a0

    Article  Google Scholar 

  • Davidson TA, Sayer CD, Perrow MR, Bramm M, Jeppesen E (2007) Are the controls of species composition similar for contemporary and sub-fossil cladoceran assemblages? A study of 39 shallow lakes of contrasting trophic status. J Paleolimnol 38:117–134. doi:10.1007/s10933-006-9066-x

    Article  Google Scholar 

  • De Niro MJ, Epstein S (1978) Influence of the diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506. doi:10.1016/0016-7037(78)90199-0

    Article  Google Scholar 

  • De Niro MJ, Epstein S (1981) Influence of the diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351. doi:10.1016/0016-7037(81)90244-1

    Article  Google Scholar 

  • Flannery MB, Stott AW, Briggs DEG, Evershed RP (2001) Chitin in the fossil record: identification and quantification of d-glucosamine. Org Geochem 32:745–754. doi:10.1016/S0146-6380(00)00174-1

    Article  Google Scholar 

  • Frey DG (1986) Cladocera analysis. In: Berglund BE (ed) Handbook of holocene palaeoecology and palaeohydrology. Wiley, pp, pp 667–692

    Google Scholar 

  • Gerdeaux D, Perga M-E (2006) Alteration of pelagic δ13C during eutrophication and re-oligotrophication in three subalpine lakes. Limnol Oceanogr 51:772–780

    Article  Google Scholar 

  • Goulden CE, Henry L, Berrigan D (1987) Egg size, postembryonic yolk, and survival ability. Oecologia 72:28–31. doi:10.1007/BF00385040

    Article  Google Scholar 

  • Grey J (2006) The use of stable isotope analyses in freshwater ecology: current awareness. Pol J Ecol 54:563–584

    Google Scholar 

  • Grey J, Jones RI, Sleep D (2000) Stable isotope analysis of the origins of zooplankton carbon in lakes of differing trophic state. Oecologia 123:232–240. doi:10.1007/s004420051010

    Article  Google Scholar 

  • Innes DJ, Singleton DR (2000) Variation in allocation to sexual and asexual reproduction among clones of cyclically parthenogenetic Daphnia pulex (Crustacea: Cladocera). Biol J Linn Soc Lond 71:771–787

    Google Scholar 

  • Jeppesen E, Madsen EA, Jensen JP, Anderson NJ (1996) Reconstructing the past density of planktivorous fish and trophic structure from sedimentary zooplankton fossils: a surface sediment calibration data set from shallow lakes. Freshw Biol 36:115–127. doi:10.1046/j.1365-2427.1996.00085.x

    Article  Google Scholar 

  • Kolasinski J, Rogers K, Frouin P (2008) Effects of acidification on carbon and nitrogen stable isotopes of benthic macrofauna from a tropical coral reef. Rapid Commun Mass Spectrom 22:2955–2960. doi:10.1002/rcm.3694

    Article  Google Scholar 

  • Leavitt P, Carpenter SR, Kitchell JF (1989) Whole-lake experiment: the annual record of fossil pigment and zooplankton. Limnol Oceanogr 34:700–717

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam, p 853

    Google Scholar 

  • Lehmann MF, Bernasconi SM, Barbieri A, McKenzie JA (2002) Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochim Cosmochim Acta 66:3573–3584. doi:10.1016/S0016-7037(02)00968-7

    Article  Google Scholar 

  • Macko SA, Helleur R, Hartley G, Jackman P (1989) Diagenesis in organic matter_a study using stable isotopes of individual carbohydrates. Adv Org Geochem 16:1129–1137. doi:10.1016/0146-6380(90)90148-S

    Article  Google Scholar 

  • Maguire CM, Grey J (2006) Determination of zooplankton dietary shift following a zebra mussel invasion, as indicated by stable isotope analysis. Freshw Biol 51:1310–1319. doi:10.1111/j.1365-2427.2006.01568.x

    Article  Google Scholar 

  • Manca M, Comoli P (1995) Temporal variations of fossil cladocera in the sediments of Lake Orta (North Italy) over the last 400 years. J Paleolimnol 14:113–122. doi:10.1007/BF00735477

    Article  Google Scholar 

  • Manca M, Torretta B, Comoli P, Amsinck SL, Jeppesen E (2007) Major changes in trophic dynamics in large, deep sub-alpine Lake Maggiore from 1940s to 2002: a high resolution comparative palaeo-neolimnological study. Freshw Biol 52:2256–2269. doi:10.1111/j.1365-2427.2007.01827.x

    Article  Google Scholar 

  • Markova S, Cerny M, Rees DJ, Stuchlik E (2006) Are they still viable? Physical conditions and abundance of Daphnia pulicaria resting eggs in sediment cores from lakes in the Tatra Mountains. Biologia 61:S135–S146. doi:10.2478/s11756-006-0126-5

    Article  Google Scholar 

  • McCutchan JH, Lewis WM, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378–390. doi:10.1034/j.1600-0706.2003.12098.x

    Article  Google Scholar 

  • Mergeay J, Verschuren D, Van Kerckhoven L, De Meester L (2004) Two hundred years of a diverse Daphnia community in Lake Naivasha (Kenya): effects of natural and human-induced environmental changes. Freshw Biol 49:998–1013. doi:10.1111/j.1365-2427.2004.01244.x

    Article  Google Scholar 

  • Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim Cosmochim Acta 48:1135–1140. doi:10.1016/0016-7037(84)90204-7

    Article  Google Scholar 

  • Montoya JP, Wiebe PH, McCarthy JJ (1992) Natural abundance of N-15 in particulate nitrogen and zooplankton in the Gulf-Stream region and Warm-Core Ring 86a. Deep Sea Res A 39:S363–S392

    Google Scholar 

  • Nilssen JP (1978) Selective vertebrate and invertebrate predation: some paleolimnological implications. Pol Arch Hydrobiol 25:307–320

    Google Scholar 

  • Perga M-E, Gerdeaux D (2006) Seasonal variations in zooplankton species isotopic composition in two lakes of different trophic status. Acta Oecol 30:69–77. doi:10.1016/j.actao.2006.01.007

    Article  Google Scholar 

  • Perga M-E, Kainz M, Matthews B, Mazumder A (2006) Carbon pathways to zooplankton: insights from the paired use of stable isotope and fatty acid biomarkers. Freshw Biol 51:2041–2051. doi:10.1111/j.1365-2427.2006.01634.x

    Article  Google Scholar 

  • Post DM, Pace ML, Hairston NG (2000) Ecosystem size determines food-chain length in lakes. Nature 405:1047–1049. doi:10.1038/35016565

    Article  Google Scholar 

  • Schimmelmann A, De Niro MJ, Poulicek M, Voss-Foucart MF, Goffinet G, Jeuniaux C (1986) Stable isotopic composition of chitin from arthropods recovered in archaeological contexts as palaeoenvironmental indicators. J Archaeol Sci 13:553–566. doi:10.1016/0305-4403(86)90040-3

    Article  Google Scholar 

  • Stankiewicz BA, Briggs DEG (2001) Animal cuticles. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell, pp, pp 259–261

    Chapter  Google Scholar 

  • Struck U, Voss M, von Bodungen B, Mumm N (1998) Stable isotopes of nitrogen in fossil cladoceran exoskeletons: implications for nitrogen sources in the central Baltic Sea during the past century. Naturwissenschaften 85:597–603. doi:10.1007/s001140050558

    Article  Google Scholar 

  • Van Hardenbroek M, Heiri O, Grey J, Bodelier PLE, Verbruggen F, Lotter AF (2009) Fossil chironomid δ13C as a proxy for past methanogenic contribution to benthic food webs in lakes. J Paleolimnol (Online First)

  • Webb SC, Hedges REM, Simpson SJ (1998) Diet quality influences the δ13C and δ15N of locusts and their biochemical components. J Exp Biol 201:2903–2911

    Google Scholar 

Download references

Acknowledgments

I am grateful to the two anonymous reviewers and O. Heiri whose comments definitely improved the quality of this manuscript. This work was supported by a “projet innovant 2007” funding from the French National Institute for Agronomical Research (INRA). I also thank J. Arce for technical assistance on this work and Alex Bec and Remy Tadonleké for their thoughtful reading and comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Elodie Perga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perga, ME. Potential of δ13C and δ15N of cladoceran subfossil exoskeletons for paleo-ecological studies. J Paleolimnol 44, 387–395 (2010). https://doi.org/10.1007/s10933-009-9340-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-009-9340-9

Keywords

Navigation