Advertisement

Journal of Paleolimnology

, Volume 44, Issue 2, pp 387–395 | Cite as

Potential of δ13C and δ15N of cladoceran subfossil exoskeletons for paleo-ecological studies

  • Marie-Elodie Perga
Original Paper

Abstract

Stable isotope analyses on cladoceran subfossil exoskeletons retrieved from sediment cores could allow the reconstruction of past changes in lake food webs provided the δ13C and δ15N values of the exoskeletons reflect those of the organisms’ whole body. The relationships between the C and N stable isotope compositions of the exoskeletons and those of the whole body were investigated for two freshwater cladoceran taxa (Bosmina sp. and Daphnia sp.) from modern samples. The C and N stable isotope compositions of the exoskeleton and those of the whole body were strongly correlated. Exoskeleton δ13C was similar to the whole body δ13C for both taxa. Daphnia exoskeletons were strongly depleted in 15N (−7.9‰) compared to the whole body. Stable isotope analyses were thereafter performed on cladoceran remains from five downcore samples from Lake Annecy, France. Results showed that Bosmina δ15N values increased by more than 4‰, between the early twentieth and twenty first centuries. Such changes might be the result of changes in nitrogen sources or cycling in the lake and/or of major shifts in Bosmina trophic position within the lake food web. This study sets up the potential of stable isotope analyses performed on cladoceran subfossil remains for paleo-ecological purposes.

Keywords

Stable isotope Food web Zooplankton Sediment Chitin Lake 

Notes

Acknowledgments

I am grateful to the two anonymous reviewers and O. Heiri whose comments definitely improved the quality of this manuscript. This work was supported by a “projet innovant 2007” funding from the French National Institute for Agronomical Research (INRA). I also thank J. Arce for technical assistance on this work and Alex Bec and Remy Tadonleké for their thoughtful reading and comments on this manuscript.

References

  1. Alekseev V, Lampert W (2001) Maternal control of resting-egg production in Daphnia. Nature 414:899–901. doi: 10.1038/414899a CrossRefGoogle Scholar
  2. Bosley KL, Wainright SC (1999) Effects of preservatives and acidification on the stable isotope ratios (15N/14N, 13C/12C) of two species of marine mammals. Can J Fish Aquat Sci 56:2181–2185. doi: 10.1139/cjfas-56-11-2181 CrossRefGoogle Scholar
  3. Cabana G, Rasmussen JB (1994) Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature 372:255–257. doi: 10.1038/372255a0 CrossRefGoogle Scholar
  4. Davidson TA, Sayer CD, Perrow MR, Bramm M, Jeppesen E (2007) Are the controls of species composition similar for contemporary and sub-fossil cladoceran assemblages? A study of 39 shallow lakes of contrasting trophic status. J Paleolimnol 38:117–134. doi: 10.1007/s10933-006-9066-x CrossRefGoogle Scholar
  5. De Niro MJ, Epstein S (1978) Influence of the diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506. doi: 10.1016/0016-7037(78)90199-0 CrossRefGoogle Scholar
  6. De Niro MJ, Epstein S (1981) Influence of the diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351. doi: 10.1016/0016-7037(81)90244-1 CrossRefGoogle Scholar
  7. Flannery MB, Stott AW, Briggs DEG, Evershed RP (2001) Chitin in the fossil record: identification and quantification of d-glucosamine. Org Geochem 32:745–754. doi: 10.1016/S0146-6380(00)00174-1 CrossRefGoogle Scholar
  8. Frey DG (1986) Cladocera analysis. In: Berglund BE (ed) Handbook of holocene palaeoecology and palaeohydrology. Wiley, pp, pp 667–692Google Scholar
  9. Gerdeaux D, Perga M-E (2006) Alteration of pelagic δ13C during eutrophication and re-oligotrophication in three subalpine lakes. Limnol Oceanogr 51:772–780CrossRefGoogle Scholar
  10. Goulden CE, Henry L, Berrigan D (1987) Egg size, postembryonic yolk, and survival ability. Oecologia 72:28–31. doi: 10.1007/BF00385040 CrossRefGoogle Scholar
  11. Grey J (2006) The use of stable isotope analyses in freshwater ecology: current awareness. Pol J Ecol 54:563–584Google Scholar
  12. Grey J, Jones RI, Sleep D (2000) Stable isotope analysis of the origins of zooplankton carbon in lakes of differing trophic state. Oecologia 123:232–240. doi: 10.1007/s004420051010 CrossRefGoogle Scholar
  13. Innes DJ, Singleton DR (2000) Variation in allocation to sexual and asexual reproduction among clones of cyclically parthenogenetic Daphnia pulex (Crustacea: Cladocera). Biol J Linn Soc Lond 71:771–787Google Scholar
  14. Jeppesen E, Madsen EA, Jensen JP, Anderson NJ (1996) Reconstructing the past density of planktivorous fish and trophic structure from sedimentary zooplankton fossils: a surface sediment calibration data set from shallow lakes. Freshw Biol 36:115–127. doi: 10.1046/j.1365-2427.1996.00085.x CrossRefGoogle Scholar
  15. Kolasinski J, Rogers K, Frouin P (2008) Effects of acidification on carbon and nitrogen stable isotopes of benthic macrofauna from a tropical coral reef. Rapid Commun Mass Spectrom 22:2955–2960. doi: 10.1002/rcm.3694 CrossRefGoogle Scholar
  16. Leavitt P, Carpenter SR, Kitchell JF (1989) Whole-lake experiment: the annual record of fossil pigment and zooplankton. Limnol Oceanogr 34:700–717CrossRefGoogle Scholar
  17. Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam, p 853Google Scholar
  18. Lehmann MF, Bernasconi SM, Barbieri A, McKenzie JA (2002) Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochim Cosmochim Acta 66:3573–3584. doi: 10.1016/S0016-7037(02)00968-7 CrossRefGoogle Scholar
  19. Macko SA, Helleur R, Hartley G, Jackman P (1989) Diagenesis in organic matter_a study using stable isotopes of individual carbohydrates. Adv Org Geochem 16:1129–1137. doi: 10.1016/0146-6380(90)90148-S CrossRefGoogle Scholar
  20. Maguire CM, Grey J (2006) Determination of zooplankton dietary shift following a zebra mussel invasion, as indicated by stable isotope analysis. Freshw Biol 51:1310–1319. doi: 10.1111/j.1365-2427.2006.01568.x CrossRefGoogle Scholar
  21. Manca M, Comoli P (1995) Temporal variations of fossil cladocera in the sediments of Lake Orta (North Italy) over the last 400 years. J Paleolimnol 14:113–122. doi: 10.1007/BF00735477 CrossRefGoogle Scholar
  22. Manca M, Torretta B, Comoli P, Amsinck SL, Jeppesen E (2007) Major changes in trophic dynamics in large, deep sub-alpine Lake Maggiore from 1940s to 2002: a high resolution comparative palaeo-neolimnological study. Freshw Biol 52:2256–2269. doi: 10.1111/j.1365-2427.2007.01827.x CrossRefGoogle Scholar
  23. Markova S, Cerny M, Rees DJ, Stuchlik E (2006) Are they still viable? Physical conditions and abundance of Daphnia pulicaria resting eggs in sediment cores from lakes in the Tatra Mountains. Biologia 61:S135–S146. doi: 10.2478/s11756-006-0126-5 CrossRefGoogle Scholar
  24. McCutchan JH, Lewis WM, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378–390. doi: 10.1034/j.1600-0706.2003.12098.x CrossRefGoogle Scholar
  25. Mergeay J, Verschuren D, Van Kerckhoven L, De Meester L (2004) Two hundred years of a diverse Daphnia community in Lake Naivasha (Kenya): effects of natural and human-induced environmental changes. Freshw Biol 49:998–1013. doi: 10.1111/j.1365-2427.2004.01244.x CrossRefGoogle Scholar
  26. Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim Cosmochim Acta 48:1135–1140. doi: 10.1016/0016-7037(84)90204-7 CrossRefGoogle Scholar
  27. Montoya JP, Wiebe PH, McCarthy JJ (1992) Natural abundance of N-15 in particulate nitrogen and zooplankton in the Gulf-Stream region and Warm-Core Ring 86a. Deep Sea Res A 39:S363–S392Google Scholar
  28. Nilssen JP (1978) Selective vertebrate and invertebrate predation: some paleolimnological implications. Pol Arch Hydrobiol 25:307–320Google Scholar
  29. Perga M-E, Gerdeaux D (2006) Seasonal variations in zooplankton species isotopic composition in two lakes of different trophic status. Acta Oecol 30:69–77. doi: 10.1016/j.actao.2006.01.007 CrossRefGoogle Scholar
  30. Perga M-E, Kainz M, Matthews B, Mazumder A (2006) Carbon pathways to zooplankton: insights from the paired use of stable isotope and fatty acid biomarkers. Freshw Biol 51:2041–2051. doi: 10.1111/j.1365-2427.2006.01634.x CrossRefGoogle Scholar
  31. Post DM, Pace ML, Hairston NG (2000) Ecosystem size determines food-chain length in lakes. Nature 405:1047–1049. doi: 10.1038/35016565 CrossRefGoogle Scholar
  32. Schimmelmann A, De Niro MJ, Poulicek M, Voss-Foucart MF, Goffinet G, Jeuniaux C (1986) Stable isotopic composition of chitin from arthropods recovered in archaeological contexts as palaeoenvironmental indicators. J Archaeol Sci 13:553–566. doi: 10.1016/0305-4403(86)90040-3 CrossRefGoogle Scholar
  33. Stankiewicz BA, Briggs DEG (2001) Animal cuticles. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell, pp, pp 259–261CrossRefGoogle Scholar
  34. Struck U, Voss M, von Bodungen B, Mumm N (1998) Stable isotopes of nitrogen in fossil cladoceran exoskeletons: implications for nitrogen sources in the central Baltic Sea during the past century. Naturwissenschaften 85:597–603. doi: 10.1007/s001140050558 CrossRefGoogle Scholar
  35. Van Hardenbroek M, Heiri O, Grey J, Bodelier PLE, Verbruggen F, Lotter AF (2009) Fossil chironomid δ13C as a proxy for past methanogenic contribution to benthic food webs in lakes. J Paleolimnol (Online First)Google Scholar
  36. Webb SC, Hedges REM, Simpson SJ (1998) Diet quality influences the δ13C and δ15N of locusts and their biochemical components. J Exp Biol 201:2903–2911Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.National Institute for Agronomical Research (INRA)Alpine Centre for Research on Lake Ecosystems and Food Webs (CARRTEL)Thonon les Bains CedexFrance

Personalised recommendations