Advertisement

Journal of Paleolimnology

, Volume 43, Issue 2, pp 393–412 | Cite as

The Holocene–Anthropocene transition in lakes of western Spitsbergen, Svalbard (Norwegian High Arctic): climate change and nitrogen deposition

  • Sofia U. Holmgren
  • Christian Bigler
  • Ólafur Ingólfsson
  • Alexander P. Wolfe
Original Paper

Abstract

Lake sediments from four small lakes on western Spitsbergen (Svalbard Archipelago, Norwegian High Arctic) preserve biostratigraphic and isotopic evidence for a complex suite of twentieth century environmental changes. At Lake Skardtjørna and Lake Tjørnskardet on Nordenskiöldkysten, there is a marked diatom floristic change coupled to increased diatom concentrations beginning around 1920. At Lake Istjørna and Lake Istjørnelva, 25 km southwest of Longyearbyen, both diatom total valve and chrysophyte stomatocyst concentrations have increased dramatically since the beginning of the 1900s. The early twentieth century changes are probably related to climate warming after the Little Ice Age. However, the most pronounced changes in diatom assemblages seem to have occurred in the last few decades. At the same time, nitrogen stable isotopes in sediment organic matter in two of the lakes became progressively depleted by ~2‰, which is consistent with diffuse atmospheric inputs from anthropogenic sources and attendant fertilization. These data suggest that climate change and nitrogen deposition may be acting together in driving these lakes towards new ecological states that are unique in the context of the Holocene.

Keywords

Anthropocene Arctic Diatoms Nitrogen Paleolimnology Spitsbergen 

Notes

Acknowledgments

We thank the Swedish Research Council and Ymer-80 for supporting this study, Jørn Dybdahl for logistics, Jack Cornett and Elis Holm for sediment chronology, and Eric Steig for isotopic measurements. We thank Professor Hilary H. Birks for providing plant macrofossil samples. Professor Barbara Wohlfarth is gratefully acknowledged for advice and taking part in fieldwork.

References

  1. Altabet MA, François R (1994) Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization. Global Biogeochem Cycles 8:103–116. doi: 10.1029/93GB03396 CrossRefGoogle Scholar
  2. AMAP (1997) Arctic monitoring and assessment programme: Arctic pollution issues: a state of the Arctic environment report. OsloGoogle Scholar
  3. AMAP (1998) Arctic monitoring and assessment program: Arctic pollution issues: a state of the Arctic environment report. OsloGoogle Scholar
  4. Appleby PG, Oldfield F (1978) The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5:1–8. doi: 10.1016/S0341-8162(78)80002-2 CrossRefGoogle Scholar
  5. Battarbee RW, Kneen MJ (1982) The use of electronically counted microspheres in absolute diatom analysis. Limnol Oceanogr 27:184–188Google Scholar
  6. Berger A, Loutre MF (1991) Insolation values for the climate of the last 10000000 years. Quat Sci Rev 10:297–317. doi: 10.1016/0277-3791(91)90033-Q CrossRefGoogle Scholar
  7. Bergström A-K, Jansson M (2006) Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Glob Change Biol 12:635–643. doi: 10.1111/j.1365-2486.2006.01129.x CrossRefGoogle Scholar
  8. Birks HH (1991) Holocene vegetational history and climate change in west Spitsbergen–plant macrofossils from Skardtjørna, an Arctic lake. Holocene 1:209–215. doi: 10.1177/095968369100100303 CrossRefGoogle Scholar
  9. Birks HJB, Line JM (1992) The use of rarefaction analysis for estimating palynological richness from the Quaternary pollen-analytical data. Holocene 2:1–10Google Scholar
  10. Birks HJB, Jones VJ, Rose NL (2004) Recent environmental change and atmospheric contamination on Svalbard as recorded in lake sediments–synthesis and general conclusions. J Paleolimnol 31:531–546. doi: 10.1023/B:JOPL.0000022550.81129.1a CrossRefGoogle Scholar
  11. Brattbakk I (1986) Vegetasjonsregioner—Svalbard og Jan Mayen. Nasjonalatlas for Norge, Kartblad 4. 1. 3Google Scholar
  12. Comiso JC (2003) Warming trends in the Arctic from clear sky satellite observations. J Clim 16:3498–3510. doi: 10.1175/1520-0442(2003)016<3498:WTITAF>2.0.CO;2 CrossRefGoogle Scholar
  13. Douglas MSV, Smol JP, Blake W Jr (1994) Marked post–eighteenth century environmental change in High–Arctic ecosystems. Science 266:416–419. doi: 10.1126/science.266.5184.416 CrossRefGoogle Scholar
  14. Eneroth K, Kjellström E, Holmén K (2003) A trajectory climatology for Svalbard; investigating how atmospheric flow patterns influence observed tracer concentrations. Phys Chem Earth 28:1191–1203Google Scholar
  15. Foged N (1964) Freshwater diatoms from Spitsbergen. Tromsø Museums Skrifter, 205 ppGoogle Scholar
  16. Førland E, Hanssen-Bauer I, Nordli Ø (1997) Climate statistics and long-term series of temperature and precipitation at Svalbard and Jan Mayen. DNMI Report 21/97 KLIMA, Norwegian Meteorological Institute, OsloGoogle Scholar
  17. Gajewski K, Hamilton PB, Mcneely R (1997) A high resolution proxy-climate record from an arctic lake with annually laminated sediments on Devon Island, Nunavut, Canada. J Paleolimnol 17:215–225. doi: 10.1023/A:1007984617675 CrossRefGoogle Scholar
  18. Glew JR (1989) A new trigger mechanism for sediment samplers. J Paleolimnol 2:241–243. doi: 10.1007/BF00195474 CrossRefGoogle Scholar
  19. Glew JR, Smol JP, Last WM (2001) Sediment core collection and extrusion. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments volume 1 Basin analysis, coring and chronological techniques. Kluwer Academic Publishers, Dordrecht, pp 73–105Google Scholar
  20. Goericke R, Montoya JP, Fry B (1994) Physiology of isotopic fractionation in algae and cyanobacteria. In: Lajtha K, Michener RH (eds) Stable isotopes in ecology, environmental science. Blackwell, Boston, pp 187–221Google Scholar
  21. Gordon C, Wynn JM, Woodin SJ (2001) Impacts of increased nitrogen supply on high Arctic heath: the importance of bryophytes and phosphorous availability. New Phytol 149:461–471. doi: 10.1046/j.1469-8137.2001.00053.x CrossRefGoogle Scholar
  22. Goto-Azuma K, Koerner RM (2001) Ice core studies of anthropogenic sulphate and nitrate trends in the Arctic. J Geophys Res 106:4959–4969. doi: 10.1029/2000JD900635 CrossRefGoogle Scholar
  23. Hanssen-Bauer I, Førland EJ (1998) Long-term trends in precipitation and temperature in the Norwegian Arctic: can they be explained by changes in atmospheric circulation patterns? Clim Res 10:143–153. doi: 10.3354/cr010143 CrossRefGoogle Scholar
  24. Heaton THE (1990) 15N/14N ratios of NOx from vehicle engines and coal-fired power stations. Tellus 42B:304–307Google Scholar
  25. Heaton THE, Wynn P, Tye AM (2004) Low 15N/14N ratios for nitrate in snow in the High Arctic (79°). Atmos Environ 38:5611–5621. doi: 10.1016/j.atmosenv.2004.06.028 CrossRefGoogle Scholar
  26. Hjelle A, Lauritzen Ø, Salvigsen O, Winsnes TS (1986) Geological map, Svalbard 1: 100.000, sheet B10G Van Mijenfjorden. Norsk Polarinstitutt Temakart No 2Google Scholar
  27. Hobbie JE, Peterson BJ, Bettez N, Deegan L, O’Brien WJ, Kling GW, Kipphut GW, Bowden WB, Hershey AE (1999) Impact of global change on the biogeochemistry and ecology of an arctic freshwater system. Polar Res 18:207–214. doi: 10.1111/j.1751-8369.1999.tb00295.x CrossRefGoogle Scholar
  28. Hyvärinen H (1970) Flandrian pollen diagrams from Svalbard. Geogr Ann 52A:213–222. doi: 10.2307/520815 CrossRefGoogle Scholar
  29. Isaksen K, Vonder Mühll D, Gubler H, Kohl T (2000) Ground surface temperature reconstruction based on data from a deep borehole in permafrost at Janssonhaugen, Svalbard. Ann Glaciol 31:287–294. doi: 10.3189/172756400781820291 CrossRefGoogle Scholar
  30. Isaksson E, Hermanson M, Hicks S, Igarashi M, Kamiyama K, Moore J, Motoyama H, Muir D, Pohjola V, Vaikmäe R, van de Wal RSW, Watanabe O (2003) Ice cores from Svalbard–useful archives of past climate and pollution history. Phys Chem Earth 28:1217–1228Google Scholar
  31. Jones VJ, Birks HJB (2004) Lake-sediment records of recent environmental change on Svalbard: results of diatom analysis. J Paleolimnol 31:445–466. doi: 10.1023/B:JOPL.0000022544.35526.11 CrossRefGoogle Scholar
  32. Kaushal S, Binford MW (1999) Relationship between C:N ratios of lake sediments, organic matter sources, and historical deforestation in Lake Pleasant, Massachusetts, USA. J Paleolimnol 22:439–442. doi: 10.1023/A:1008027028029 CrossRefGoogle Scholar
  33. Kekonen T, Moore J, Mulvaney R, Isaksson E, Pohjola V, van de Wal RSW (2002) A 800 year record of nitrate from the Lomonosovfonna ice core, Svalbard. Ann Glaciol 35:261–265. doi: 10.3189/172756402781817121 CrossRefGoogle Scholar
  34. Koerner RM, Fisher DA (2002) Ice-core evidence for widespread Arctic glacier retreat in the Last Interglacial and the early Holocene. Ann Glaciol 35:19–24. doi: 10.3189/172756402781817338 CrossRefGoogle Scholar
  35. Krammer K, Lange-Bertalot H (2001) Bacillariophyceae. In: Ettl H, Gerloff H, Heynig H, Mollenhauer D (eds) Süsswasserflora Von Mitteleuropa 2/1–4. Gustav Fischer Verlag, StuttgartGoogle Scholar
  36. Landvik JY, Mangerud J, Salvigsen O (1987) The late Weichselian and Holocene shoreline displacement on the west-central coast of Svalbard. Polar Res 5:29–44. doi: 10.1111/j.1751-8369.1987.tb00353.x CrossRefGoogle Scholar
  37. Lehmann MF, Bernasconi SM, Barbieri A, McKenzie JA (2002) Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochim Cosmochim Acta 66:3573–3584. doi: 10.1016/S0016-7037(02)00968-7 CrossRefGoogle Scholar
  38. Major H, Nagy J (1972) Geology of the Adventdalen map area. Norsk Polarinstitutt Skrifter Nr 138Google Scholar
  39. Mangerud J, Landvik JY (2007) Younger Dryas cirque glaciers in western Spitsbergen: smaller than during the Little Ice Age. Boreas 36:278–285. doi: 10.1080/03009480601134827 CrossRefGoogle Scholar
  40. Mayewski PA, Lyons WB, Spencer MJ, Twickler MS, Buck SI, Whitlow S (1990) An ice-core record of atmospheric response to anthropogenic sulfate and nitrate. Nature 346:554–556. doi: 10.1038/346554a0 CrossRefGoogle Scholar
  41. Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289–302. doi: 10.1016/0009-2541(94)90059-0 CrossRefGoogle Scholar
  42. Meyers PA, Lallier-Vergès E (1999) Lacustrine organic matter records of Late Quaternary paleoclimates. J Paleolimnol 21:345–372. doi: 10.1023/A:1008073732192 CrossRefGoogle Scholar
  43. Ostrom NE, Long DT, Bell EM, Beals T (1998) The origin and cycling of particulate and sedimentary organic matter and nitrate in Lake Superior. Chem Geol 152:13–28. doi: 10.1016/S0009-2541(98)00093-X CrossRefGoogle Scholar
  44. Overpeck J, Hughen K, Hardy D, Bradley R, Casse R, Douglas M, Finney B, Gajewski K, Jacoby G, Jennings A, Lamoreux S, Lasca A, MacDonald G, Moore J, Retelle M, Smith S, Wolfe A, Zielinski G (1997) Arctic environmental change of the last four centuries. Science 278:1251–1256. doi: 10.1126/science.278.5341.1251 CrossRefGoogle Scholar
  45. Phillips DL, Gregg JW (2001) Uncertainty in source partitioning using stable isotopes. Oecologia 127:171–179. doi: 10.1007/s004420000578 CrossRefGoogle Scholar
  46. Salvigsen O, Forman SL, Miller GH (1992) Thermophilous molluscs on Svalbard during the Holocene and their paleoclimatic implications. Polar Res 11:1–10. doi: 10.1111/j.1751-8369.1992.tb00407.x CrossRefGoogle Scholar
  47. Serreze MC, Walsh JE, Chapin III FS, Osterkamp T, Dyurgerov M, Romanovsky V, Oechel WC, Morison J, Zhang T, Barry G (2000) Observational evidence of recent change in the northern high-latitude environment. Clim Change 46:159–207CrossRefGoogle Scholar
  48. Sickman JO, Melack JM, Clow DW (2003) Evidence for nutrient enrichment of high-elevation lakes in the Sierra Nevada, California. Limnol Oceanogr 48:1885–1892Google Scholar
  49. Simões JC, Zagorodnov VS (2001) The record of anthropogenic pollution in snow and ice in Svalbard, Norway. Atmos Environ 35:403–413. doi: 10.1016/S1352-2310(00)00122-9 CrossRefGoogle Scholar
  50. Smol JP, Wolfe AP, Birks HJB, Douglas MSV, Jones V, Korhola A, Pienitz R, Rühland K, Sorvari S, Antoniades D, Brooks SJ, Fallu M, Hughes M, Keatley BE, Laing TE, Michelutti N, Nazarova L, Nyman M, Paterson AM, Perren B, Quinlan R, Rautio M, Saulnier-Talbot E, Siitonen S, Solovieva N, Weckström J (2005) Climate-driven regime shifts in the biological communities of arctic lakes. Proc Natl Acad Sci USA 102:4397–4402. doi: 10.1073/pnas.0500245102 CrossRefGoogle Scholar
  51. Snyder JA, Werner A, Miller GH (2000) Holocene cirque glacier activity in western Spitsbergen, Svalbard: sediment records from proglacial Linnévatnet. Holocene 10:555–563. doi: 10.1191/095968300667351697 CrossRefGoogle Scholar
  52. Sorvari S, Korhola A, Thompson R (2002) Lake diatom responses to recent Arctic warming in Finnish Lapland. Glob Change Biol 8:153–164. doi: 10.1046/j.1365-2486.2002.00463.x CrossRefGoogle Scholar
  53. Stuiver M, Reimer PJ, Bard E, Beck JW, Burr GS, Hughen KA, Kromer B, McCormac G, van der Plicht J, Spurk M (1998) IntCal98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40:1041–1083Google Scholar
  54. Svendsen JI, Mangerud J (1992) Paleoclimatic inferences from glacial fluctuations on Svalbard during the last 20000 years. Clim Dyn 6:213–220Google Scholar
  55. Svendsen JI, Mangerud J (1997) Holocene glacial and climatic variations on Spitsbergen, Svalbard. Holocene 7:45–57. doi: 10.1177/095968369700700105 CrossRefGoogle Scholar
  56. Svendsen JI, Elverhoi A, Mangerud J (1996) The retreat of the Barents Sea Ice Sheet on the western Svalbard margin. Boreas 25:244–256CrossRefGoogle Scholar
  57. Talbot MR (2001) Nitrogen isotopes in paleolimnology. In: Last WM, Smol JP (eds) Tracking environmental change using Lake Sediments volume 2: physical and geochemical methods. Kluwer Academic Publishers, Dordrecht, pp 401–439Google Scholar
  58. Teranes JL, Bernasconi SM (2000) The record of nitrate utilization and productivity limitation provided by δ15 N values in lake organic matter—A study of sediment trap and core sediments from Baldeggersee, Switzerland. Limnol Oceanogr 45:801–813Google Scholar
  59. ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector method for multivariate direct gradient analysis. Ecology 67:1167–1179CrossRefGoogle Scholar
  60. ter Braak CJF, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for Canonical Community Ordination (Version 4.5). Microcomputer Power, Ithaca, New YorkGoogle Scholar
  61. ter Braak CJF, Verdonschot PFM (1995) Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat Sci 57:255–289CrossRefGoogle Scholar
  62. van de Vijver B, Ledeganck P, Potters G, Beyens L (1999) Diatom communities from alkaline environments of the Brøgger peninsula, north–west Spitsbergen. Nova Hedwigia 68:93–115Google Scholar
  63. Werner A (1993) Holocene moraine chronology, Spitsbergen; Svalbard: lichenometric evidence for multiple Neoglacial advances in the Arctic. Holocene 3:128–137. doi: 10.1177/095968369300300204 CrossRefGoogle Scholar
  64. Wolfe AP (1997) On diatom concentrations in lake sediments: Results of an inter-laboratory comparison and other experiments performed on a uniform sample. J Paleolimnol 18:261–268. doi: 10.1023/A:1007937300347 CrossRefGoogle Scholar
  65. Wolfe AP, Perren BB (2001) Chrysophyte microfossils record marked responses to recent environmental changes in high- and mid-arctic lakes. Can J Bot 79:747–752. doi: 10.1139/cjb-79-6-747 CrossRefGoogle Scholar
  66. Wolfe AP, Baron JS, Cornett RJ (2001) Anthropogenic nitrogen deposition induces rapid ecological changes in alpine lakes of the Colorado Front Range (USA). J Paleolimnol 25:1–7. doi: 10.1023/A:1008129509322 CrossRefGoogle Scholar
  67. Wolfe AP, Van Gorp AC, Baron JS (2003) Recent ecological and biogeochemical changes in alpine lakes of Rocky Mountain National Park (Colorado, USA): a response to anthropogenic nitrogen deposition. Geobiology 1:153–168. doi: 10.1046/j.1472-4669.2003.00012.x CrossRefGoogle Scholar
  68. Wolfe AP, Miller GF, lsen CA, Forman SL, Doran PT, Holmgren SU (2004) Geochronology of high latitude lake sediments. In: Pienitz R, Douglas MSV, Smol JP (eds) Long-term environmental change in the Arctic and Antarctic lakes. Kluwer, Dordrecht, pp 1–31Google Scholar
  69. Ziaja W (2001) Glacial recession in Sorkappland and central Nordenskiöldland, Spitsbergen, Svalbard, during the twentieth century. Arct Antarct Alp Res 33:36–41. doi: 10.2307/1552275 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Sofia U. Holmgren
    • 1
    • 2
  • Christian Bigler
    • 3
  • Ólafur Ingólfsson
    • 2
    • 4
  • Alexander P. Wolfe
    • 5
  1. 1.Department of Earth SciencesUniversity of GothenburgGothenburgSweden
  2. 2.The University Centre in SvalbardLongyearbyenNorway
  3. 3.Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden
  4. 4.Department of Earth SciencesUniversity of IcelandReykjavikIceland
  5. 5.Department of Earth and Atmospheric SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations