Skip to main content

Advertisement

Log in

The ecology of Pediastrum (Chlorophyceae) in subarctic lakes and their potential as paleobioindicators

  • Original Paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Subarctic and arctic lakes are the focus of many paleolimnological studies, as they are still among the least impacted lakes by humans. Hence they provide an excellent setting for studies on long-term climatic variability without the overriding effects of direct anthropogenic perturbation. On the other hand, these ecosystems are highly vulnerable to even moderate anthropogenic influence like long-distance airborne transport of nutrients and pollutants. The paleolimnological studies conducted in these areas usually include a multitude of different proxies, but so far only few have used the green algal group of Pediastrum Meyen. These algae, however, preserve well in sediments and can be identified to species level, which lends them potential as a paleo-proxy. In this study we analysed the present Pediastrum assemblages from surface-sediments of 16 subarctic lakes in Finnish Lapland as well as bottom samples from the same sediment cores, which are “spot” samples from the recent past. We found a total of 14 Pediastrum taxa, five of which occurred at moderate to high relative abundances. The majority of the taxa showed distinct relationships to environmental variables measured. Of these, pH and dissolved organic carbon (DOC) explained most of the variance in the distribution of Pediastrum and generally summarised the main environmental gradients in our data set well. Five of the studied lakes lacked Pediastrum taxa altogether, and Pediastrum occurred at low abundances in four additional lakes. All of these nine lakes have extremely low nutrient concentrations and generally lowest pH and DOC in the data set and were defined by barren catchment areas and scarce lake macrophyte growth. According to a top–bottom analysis of sediment cores, the Pediastrum assemblages of the study lakes have changed moderately, suggesting changed environmental conditions in the lakes. Although these changes appear to be climate-related, more studies are needed to confirm this hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5

Similar content being viewed by others

References

  • Alhonen P, Ristiluoma S (1973) On the occurrence of subfossil Pediastrum algae in a Flandrian core at Kirkkonummi, southern Finland. Bull Geol Soc Finl 45:73–77

    Google Scholar 

  • Anderson NJ (1993) Natural versus anthropogenic change in lakes: the role of the sediment record. Trends Ecol Evol 8:356–361

    Article  Google Scholar 

  • AMAP Assessment (2006) Acidifying pollutants, Arctic haze, and acidification in the Arctic. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, p xii + 112

  • Birks HJB (1995) Quantitative palaeoenvironmental reconstructions. In: Maddy D, Brew JS (eds) Statistical modelling of quaternary science data. QRA technical guide, vol. 5. Quarternary Research Association, Cambridge, pp 161–254

    Google Scholar 

  • Boudreau REA, Galloway JM, Patterson RT, Kumar A, Michel FA (2005) A paleolimnological record of Holocene climate and environmental change in the Temagani region, northeastern Ontario. J Paleolimnol 33:44–461

    Article  Google Scholar 

  • Bradshaw EG, Rasmussen P, Nielsen H, Anderson NJ (2005) Mid- to late-Holocene land-use change and lake development at Dallund Sø, Denmark: trends in lake primary production as reflected by algal and macrophyte remains. The Holocene 15(8):1130–1142

    Article  Google Scholar 

  • Cameron NG, Birks HJB, Jones VJ, Berge F, Catalan J, Flower RJ, Garcia J, Kawecka B, Koinig KA, Marchetto A, Sánchez-Castillo P, Schmidt R, Šiško M, Solovieva N, Štefková E, Toro M (1999) Surface-sediment and epilithic diatom pH calibration sets for remote European mountain lakes (AL:PE Project) and their comparison with the Surface Waters Acidification Programme (SWAP) calibration set. J Paleolimnol 22:291–317

    Article  Google Scholar 

  • Cumming BF, Smol JP, Kingston JC, Charles DF, Birks HJB, Camburn KE, Dixit SS, Uutala AJ, Selle AR (1992) How much acidification has occurred in Adirondack region lakes (New York, USA) since preindustrial times. Can J Fish Aquatic Sci 49:128–141

    Google Scholar 

  • Douglas MSV, Smol JP (2000) Eutrophication and recovery in the high Arctic: Meretta lake revisited. Hydrobiologia 431:193–204

    Article  Google Scholar 

  • Douglas MSV, Smol JP, Blake W Jr (1994) Marked post-18th century environmental change in high-Arctic ecosystems. Science 266:416–419

    Article  Google Scholar 

  • Eilers JM, Kann J, Cornett J, Moser K, Amand A (2004) Paleolimnological evidence of change in a shallow, hypereutrophic lake: upper Klamath lake, Oregon, USA. Hydrobiologia 520:7–18

    Article  Google Scholar 

  • Eisner WR, Törnqvist TE, Koster EA, Bennike O, van Leeuwen JFN (1995) Paleoecological studies of a holocene lacustrine record from the Kangerlussuaq (Søndre Strømfjord) region of West Greenland. Quat Res 43:55–66

    Article  Google Scholar 

  • Forsström L (2006) Phytoplankton ecology of subarctic lakes in Finnish Lapland. Kilpisjärvi Notes 19. Yliopistopaino, Helsinki, pp 42 (PhD-thesis)

  • Fredskild B (1983) The holocene development of some low and high arctic Greenland lakes. Hydrobiologia 103:217–224

    Article  Google Scholar 

  • Glew JR (1991) Miniature gravity corer for recovering short sediment cores. J Paleolimnol 5:285–287

    Article  Google Scholar 

  • Goto-Azuma K, Koerner RM (2001) Ice core studies of anthropogenic sulfate and nitrate trends in the Arctic. J Geophys Res 106D:4959–4969

    Article  Google Scholar 

  • Hettelingh J-P, Downing RJ, de Smet PAM (eds) (1991) Mapping critical loads concept for Europe. CCE Technical Report No. 1. Bilthoven: national inst. of public health and environmental protection (RIVM)

  • Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–432

    Article  Google Scholar 

  • Hill MO, Gauch HG (1980) Detrended correspondence analysis: an improved ordination technique. Vegetation 42:47–58

    Article  Google Scholar 

  • Hirvas H (1991) Pleistocene stratigraphy of Finnish lapland. Geological survey of Finland, Bulletin 354. Vammalan Kirjapaino, Espoo, p 123

    Google Scholar 

  • Huisman J, Olff H, Fresco LFM (1993) A hierarchical set of models for species response analysis. J Veg Sci 4:37–46

    Article  Google Scholar 

  • IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007, the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, USA

    Google Scholar 

  • Jankovská V, Komárek J (2000) Indicative value of Pediastrum and other coccal green algae in palaeoecology. Folia Geobot 35:59–82

    Article  Google Scholar 

  • Järvinen A, Partanen R (2008) Stand dynamics of mountain birch, Betula pubescens ssp. czerepanovii (Orlova) Hämet-Ahti, in NW Finnish Lapland. Kilpisjärvi Notes 21. Kilpisjärvi biological station, University of Helsinki, pp 8

  • John DM, Whitton BA, Brook AJ (eds) (2002) The freshwater algal flora of the British Isles. An identification guide to freshwater and terrestrial algae. Cambridge University Press, Cambridge, pp 702

  • Komarek J, Fott B (1983) Chlorophyceae (Grünalgen), Ordnung Chlorococcales. In: Huber-Pestalozzi G (ed) Das Phytoplankton des Süsswassers. Systematik und Biologie. 7. Teil, 1. Hälfe. (Die Binnengewässer, Band XVI). E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, p 1044

    Google Scholar 

  • Komárek J, Jankovská V (2001) Review of the green algal genus Pediastrum; Implication for pollen-analytica research. Bibl Phycol 108. J. Cramer, Berlin, p 127

    Google Scholar 

  • Korhola A, Weckström J (2004) Paleolimnological studies in Arctic Fennoscandia and the kola peninsula (Russia). In: Pienitz R, Douglas MSV, Smol JP (eds) Long-term environmental change in Arctic and Antarctic lakes, vol 8. Kluwer, Dordrecht, pp 381–418

    Chapter  Google Scholar 

  • Korhola A, Weckström J, Blom T (2002) Relationships between lake and land-cover features along latitudinal vegetation ecotones in arctic Fennoscandia. Arch Hydrobiol Suppl 139/2, Monogr Stud 203–235

  • Livingstone DA, Bryan Kirk Jr, Leahy RG (1958) Effects of an arctic environment on the origin and development of freshwater lakes. Limnol Oceanogr 3(2):192–214

    Article  Google Scholar 

  • Michelutti N, Douglas MSV, Smol JP (2003a) Diatom response to recent climate change in a high arctic lake (Char Lake, Cornwallis Island, Nunavut). Global Planet Change 38:257–271

    Article  Google Scholar 

  • Michelutti N, Holtham AJ, Douglas MSV, Smol JP (2003b) Periphytic diatom assemblages from ultra-oligotrophic and UV transparent lakes and ponds on Victoria Island and comparisons with other diatom surveys in the Canadian Arctic. J Phycol 39:465–480

    Article  Google Scholar 

  • Milecka K, Szeroczyńska K (2005) Changes in macrophytic flora and planktonic organisms in lake Ostrowite, Poland, as a response to climatic and trophic fluctuations. The Holocene 15(1):74–84

    Article  Google Scholar 

  • Nielsen H, Sorensen I (1992) Taxonomy and stratigraphy of late-glacial Pediastrum taxa from Lysmosen, Denmark a preliminary study. Rev Palaeobot Palynol 74:55–75

    Article  Google Scholar 

  • Oksanen J, Minchin PR (2002) Continuum theory revisited: what shape are species responses along ecological gradients? Ecol Model 157:119–129

    Article  Google Scholar 

  • Patterson RT, Dalby A, Kumar A, Henderson LA, Boudreau REA (2002) Arcellaceans (thecamoebians) as indicators of land-use change: settlement history of the Swan Lake area, Ontario as a case study. J Paleolimnol 28:297–316

    Article  Google Scholar 

  • Renberg I (1991) The HON-Kajak sediment corer. J Paleolimnol 6:167–170

    Google Scholar 

  • Rühland K, Smol JP (2005) Diatom shifts as evidence for recent subarctic warming in a remote tundra lake, NWT, Canada. Palaeogeogr Palaeoclimatol Palaeoecol 226:1–16

    Article  Google Scholar 

  • Rull V, López-Sáez JA, Vegas-Vilarrúbia T (2008) Contribution of non-pollen palynomorphs to the paleolimnological study of a high-altitude Andean lake (Laguna Verde Alta, Venezuela). J Paleolimnol 40:399–411. doi: 10.1007/s10933-007-9169-z

    Article  Google Scholar 

  • Sarmaja-Korjonen K, Seppänen A, Bennike O (2006) Pediastrum algae from a classic late glacial Bølling Sø site, Denmark: response of aquatic biota to climate change. Rev Palaeobot Palynol 138:95–107

    Article  Google Scholar 

  • Seppä H, Weckström J (1999) Holocene vegetational and limnological changes in the Fennoscandian tree-line area as documented by pollen and diatom records from lake Tsuolbmajavri, Finland. Ecoscience 6:621–635

    Google Scholar 

  • Simonen A (1990) The Finnish precambrian. In: Alalammi P (ed) Atlas of Finland; geology, appendix 123–126. National Board of Survey and Geographical Society of Finland, Helsinki, pp 1–4

    Google Scholar 

  • Smol JP (1988) Paleoclimate proxy data from freshwater arctic diatoms. Verh Int Ver Limnol 23:837–844

    Google Scholar 

  • Smol JP, Douglas MSV (2007a) Crossing the final ecological threshold in high Arctic ponds. Proc Natl Acad Sci USA 104:12395–12397

    Article  Google Scholar 

  • Smol JP, Douglas MSV (2007b) From controversy to consensus: making the case for recent climate change in the Arctic using lake sediments. Front Ecol Environ 5(9):466–474

    Article  Google Scholar 

  • Smol JP, Birks HJB, Last WM (eds) (2001a) Tracking environmental change using lake sediments volume 3: terrestrial, algal, and siliceous indicators. Kluwer, Dordrecht, p 371

    Google Scholar 

  • Smol JP, Birks HJB, Last WM (eds) (2001b) Tracking environmental change using lake sediments, volume 4: zoological indicators. Kluwer, Dordrecht, p 217

    Google Scholar 

  • Smol JP, Wolfe AP, Birks HJB, Douglas MSV, Jones VJ, Korhola A, Pienitz R, Rühland K, Sorvari S, Antoniades D, Brooks SJ, Fallu M-A, Hughes M, Keatley B, Laing T, Michelutti N, Nazarova L, Nyman M, Paterson AM, Perren B, Quinlan R, Rautio M, Saulnier-Talbot É, Siitonen S, Weckström J (2005) Climate-driven regime shifts in the biological communities of arctic lakes. Proc Natl Acad Sci USA 102:4397–4402

    Article  Google Scholar 

  • Sorvari S, Korhola A, Thompson R (2002) Lake diatom responses to recent Arctic warming in Finnish lapland. Global Change Biol 8:153–164

    Article  Google Scholar 

  • ter Braak CFJ, Šmilauer P (2002) CANOCO reference manual and canodraw for windows user guide software for canonical community ordination (version 4.5). Biometris, Wageningen and Česke Budejovice, p 500

    Google Scholar 

  • Tikkanen T (1986) Kasviplanktonopas (guide to phytoplankton). Suomen Luonnonsuojelun Tuki Oy, Forssa, pp 198–202

    Google Scholar 

  • Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel of climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Weckström J (2001) Assessment of diatoms as markers of environmental change in northern Fennoscandia. Unpublished PhD-thesis, University of Helsinki, Helsinki

  • Weckström J, Korhola A, Blom T (1997) The relationship between diatoms and water temperature in thirty subarctic Fennoscandian lakes. Arct Alp Res 29:75–92

    Article  Google Scholar 

  • Weckström J, Snyder JA, Korhola A, Laing TE, MacDonald GM (2003) Diatom inferred acidity history of 32 lakes on the kola peninsula, Russia. Water Air Soil Pollut 149:339–361

    Article  Google Scholar 

  • Weckström J, Korhola A, Erästö P, Holmström L (2006) Temperature patterns over the past eight centuries in northern Fennoscandia inferred from sedimentary diatoms. Quat Res 66:78–86

    Article  Google Scholar 

  • Wolfe AP (2000) A 6500-year diatom record from southwestern Fosheim Peninsula, Ellesmere Island, Nunavut. In: Garneau M, Alt BT (eds) Environmental response to climate change in the canadian high Arctic. Geol Surv Can Bull, vol 529, pp 249–256

Download references

Acknowledgments

The Kone Foundation and the Academy of Finland are acknowledged for financial support to J. Weckström and to K. Weckström. We are grateful to P. Junttila, L. Forsström, M. Rautio and S. Sorvari for sample collection and to L. Forsström for valuable and interesting discussions. S. Juggins is kindly acknowledged for the help with plotting Fig. 4. J. P. Smol and an anonymous reviewer are thanked for constructive comments that helped improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaarina Weckström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weckström, K., Weckström, J., Yliniemi, LM. et al. The ecology of Pediastrum (Chlorophyceae) in subarctic lakes and their potential as paleobioindicators. J Paleolimnol 43, 61–73 (2010). https://doi.org/10.1007/s10933-009-9314-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-009-9314-y

Keywords

Navigation