Journal of Paleolimnology

, Volume 43, Issue 1, pp 51–59 | Cite as

Bosmina remains in lake sediment as indicators of zooplankton community composition

  • M. L. Alexander
  • S. C. Hotchkiss
Original Paper


We measured Bosmina spp. mucro and antennule lengths in surface sediment samples from Wisconsin lakes to test whether such measures could be used to reconstruct zooplankton community composition and size structure in paleolimnological studies. Our data set included 58 lakes of various depths, water chemistry, trophic state, macrophyte cover, and zooplankton community composition. We used non-metric multidimensional scaling ordination (NMS) and simple correlation analysis to assess whether mucro and antennule measurements reflect the zooplankton community size structure. Bosmina mucro length (r = 0.727, p < 0.05) and antennule length (r = 0.360, p < 0.05) correlated with the NMS axis, which essentially represents zooplankton community size structure. Bosmina mucro length correlated positively with the abundance of the large-bodied zooplankter Epischura lacustris (r = 0.364, p < 0.01), as well as Diacyclops thomasi (r = 0.256, p < 0.05), and Leptodiaptomus minutus (r = 0.578, p ≤ 0.001), but correlated negatively with the abundance of the small-bodied zooplankter Tropocyclops prasinus (r = −0.385, p < 0.01). Bosmina antennule length correlated positively with the abundance of L. minutus (r = 0.344, p < 0.01) and negatively with T. prasinus (r = −0.258, p < 0.05). This broad, spatial scale assessment supports the use of Bosmina mucro and antennule lengths as a proxy for zooplankton community size structure. Mucro length is a stronger indicator of zooplankton community size structure as seen in its strong correlation with the NMS axis 1 and the significant correlations with abundance of predatory copepods.


Paleolimnology Food-web reconstruction Mucrones Antennules 



We are indebted to P. Sanford and S. Dodson for their help with zooplankton identification and to J. Rusak, M. Kratz, J. Morrison, M. Woodford and S. Van-Egeren for their help in the field. This work was funded by the NSF under Cooperative Agreement #DEB-0083545 (Biocomplexity).


  1. Adrian R, Frost TM (1992) Comparative feeding ecology of Tropocyclops prasinus mexicanus (Copepoda, Cyclopoida). J Plankton Res 14:1369–1382. doi: 10.1093/plankt/14.10.1369 CrossRefGoogle Scholar
  2. Alexander ML, Woodford MP, Hotchkiss SC (2008) Freshwater macrophyte communities in lakes of variable landscape position and development in northern Wisconsin, USA. Aquat Bot 88:77–86. doi: 10.1016/j.aquabot.2007.08.010 CrossRefGoogle Scholar
  3. Branstrator DK (1998) Predicting diet composition from body length in the zooplankton predator Leptodora kindtii. Limnol Oceanogr 43:530–535Google Scholar
  4. Brooks JL, Dodson SI (1965) Predation, body size, and composition of plankton. Science 150:28–35. doi: 10.1126/science.150.3692.28 CrossRefGoogle Scholar
  5. Carpenter SR, Lodge DM (1986) Effects of submersed macrophytes on ecosystem processes. Aquat Bot 26:341–370. doi: 10.1016/0304-3770(86)90031-8 CrossRefGoogle Scholar
  6. Carpenter SR, Kitchell JF, Hodgson JF (1985) Cascading trophic interactions and lake productivity. Bioscience 35:634–639. doi: 10.2307/1309989 CrossRefGoogle Scholar
  7. Chang KH, Hanazato T (2003) Seasonal and reciprocal succession and cyclomorphosis of two Bosmina species (Cladocera, Crustacea) co-existing in a lake: their relationship with invertebrate predators. J Plankton Res 25:141–150. doi: 10.1093/plankt/25.2.141 CrossRefGoogle Scholar
  8. Dodson SI (1974) Adaptive change in plankton morphology in response to size-selective predation: a new hypothesis of cyclomorphosis. Limnol Oceanogr 19:721–729Google Scholar
  9. Engel S (1988) The role and interactions of submersed macrophytes in a shallow Wisconsin lake. J Freshwat Ecol 4:329–340Google Scholar
  10. Frey DG (1986) Cladoceran analysis. In: Berglund BE (ed) Handbook of holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 667–692Google Scholar
  11. Gliwicz ZM (1977) Food size selection and seasonal succession of filter feeding zooplankton in an eutrophic lake. Ekol Polska 25:179–225Google Scholar
  12. Hellsten M, Lagergren R, Stenson J (1999) Can extreme morphology in Bosmina reduce predation risk from Leptodora? An experimental test. Oecologia 118:23–28. doi: 10.1007/s004420050699 CrossRefGoogle Scholar
  13. Henry RIII (1985) The impact of zooplankton size structure on phosphorus cycling in field enclosures. Hydrobiologia 120:3–9Google Scholar
  14. Jeppesen E, Madsen EA, Jensen JP (1996) Reconstructing the past density of planktivorous fish and trophic structure from sedimentary zooplankton fossils: a surface sediment calibration data set from shallow lakes. Freshw Biol 36:115–127. doi: 10.1046/j.1365-2427.1996.00085.x CrossRefGoogle Scholar
  15. Jeppesen E, Jensen JP, Jensen C, Faafeng B, Hessen DO, Søndergaard M, Lauridsen T, Brettum P, Christoffersen K (2003) The impact of nutrient state and lake depth on top-down control in the pelagic zone of lakes: a study of 466 lakes from the temperate zone to the arctic. Ecosystems 6:313–325. doi: 10.1007/s10021-002-0145-1 CrossRefGoogle Scholar
  16. Karabin A (1971) A comparison of two methods of sampling the plankton predator Leptodora kindtii (Focke) (Crustacea, Cladocera). B Acad Pol Sci Biol 19:197–200Google Scholar
  17. Kerfoot WC (1975) The divergance of adjacent populations. Ecology 56:1298–1313. doi: 10.2307/1934698 CrossRefGoogle Scholar
  18. Kerfoot WC (1978) Combat between predatory copepods and their prey: Cyclops, Epischura, and Bosmina. Limnol Oceanogr 23:1089–1102Google Scholar
  19. Kerfoot WC (1981) Long-term replacement cycles in cladoceran communities: a history of predation. Ecology 62:216–233. doi: 10.2307/1936683 CrossRefGoogle Scholar
  20. Kerfoot WC, Peterson C (1980) Predatory copepods and Bosmina: replacement cycles and further influences of predation upon prey reproduction. Ecology 61:417–431. doi: 10.2307/1935198 CrossRefGoogle Scholar
  21. Kitchell JA, Kitchell JF (1980) Size-selection predation, light transmission, and oxygen stratification: evidence from the recent sediments of manipulated lakes. Limnol Oceanogr 25:389–402Google Scholar
  22. Korosi JB, Paterson AM, DeSellas AM, Smol JP (2008) Linking mean body size of pelagic Cladocera to environmental variables in Precambrian Shield lakes: a paleolimnological approach. J Limnol 67:22–34Google Scholar
  23. Kratz T, Webster K, Bowser C, Magnuson J, Benson B (1997) The influence of landscape position on lakes in northern Wisconsin. Freshw Biol 37:209–217. doi: 10.1046/j.1365-2427.1997.00149.x CrossRefGoogle Scholar
  24. Kruskal JB (1964a) Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29:1–27. doi: 10.1007/BF02289565 CrossRefGoogle Scholar
  25. Kruskal JB (1964b) Nonmetric multidimensional scaling: a numerical method. Psychometrika 29:115–129. doi: 10.1007/BF02289694 CrossRefGoogle Scholar
  26. Leavitt PR, Carpenter SR, Kitchell JF (1989) Whole-lake experiments: the annual record of fossil pigments and zooplankton. Limnol Oceanogr 34:700–717CrossRefGoogle Scholar
  27. Mather PM (1976) Computational methods of multivariate analysis in physical geography. Wiley, LondonGoogle Scholar
  28. McCune B, Grace JB (2002) Analysis of ecological communities. MJM Software Design, OregonGoogle Scholar
  29. Mittelbach G (1984) Predation and resource partitioning in two sunfishes (Centrarchidae). Ecology 65:499–513. doi: 10.2307/1941412 CrossRefGoogle Scholar
  30. Mueller WP (1964) The distribution of Cladoceran remains in surficial sediments from three northern Indiana lakes. Invest Indiana Lakes Streams 6:1–64Google Scholar
  31. Persaud AD, Yan ND (2001) Accounting for spatial variability in the design of sampling programmes for Chaoborus larvae. J Plankton Res 23:279–285. doi: 10.1093/plankt/23.3.279 CrossRefGoogle Scholar
  32. Persson L, Crowder LB (1998) Fish-habitat interactions mediated via ontogenetic niche shifts. In: Jeppesen E, Søndergaard M, Christoffersen K (eds) The structuring role of submerged macrophytes in lakes. Springer, New York, pp 3–23Google Scholar
  33. Post DM, Frost TM, Kitchell JF (1995) Morphological response by Bosmina longirostris and Eubosmina tubicen to changes in copepod predator populations during a whole-lake acidification experiment. J Plankton Res 17:1621–1632. doi: 10.1093/plankt/17.8.1621 CrossRefGoogle Scholar
  34. Riessen HP, O’Brien WJ, Loveless B (1984) An analysis of the components of Chaoborus predation on zooplankton and the calculation of relative prey vulnerabilities. Ecology 65:514–522. doi: 10.2307/1941413 CrossRefGoogle Scholar
  35. Saether OA (1972) VI. Chaoboridae. Zooplankton Binnengewasser 26:257–280Google Scholar
  36. Sanford PR (1993) Bosmina longirostris antennule morphology as an indicator of intensity of planktivory by fishes. Bull Mar Sci 53:216–227Google Scholar
  37. Thorpe JE, Covich AP (eds) (2001) Ecology and classification of North American freshwater invertebrates. Academic Press, San DiegoGoogle Scholar
  38. Torke B (2001) The distribution of calanoid copepods in the plankton of Wisconsin lakes. Hydrobiologia 453:351–365. doi: 10.1023/A:1013185916287 CrossRefGoogle Scholar
  39. Yan ND, Somers KM, Girard RE, Paterson AM, Keller W, Ramcharan CW, Rusak JA, Ingram R, Morgan GE, Gunn JM (2008) Long-term trends in zooplankton of Dorset, Ontario, lakes: the probable interactive effects of changes in pH, total phosphorus, dissolved organic carbon, and predators. Can J Fish Aquat Sci 65:862–877. doi: 10.1139/F07-197 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Limnology and Marine SciencesUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Botany DepartmentUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.US Fish and Wildlife ServiceSan MarcosUSA

Personalised recommendations