Journal of Paleolimnology

, Volume 41, Issue 1, pp 129–141 | Cite as

Paleolimnological evidence of the response of the central Canadian treeline zone to radiative forcing and hemispheric patterns of temperature change over the past 2000 years

  • Glen M. MacDonald
  • David F. Porinchu
  • Nicolas Rolland
  • Konstantine V. Kremenetsky
  • Darrell S. Kaufman
Original Paper


Instrumental climate records from the central Canadian treeline zone display a pattern of variation similar to general Northern Hemisphere temperature trends. To examine whether this general correspondence extends back beyond the instrumental record, we obtained a sediment core from Lake S41, a small lake in the Northwest Territories of Canada at 63°43.11′ N, 109°19.07′ W. A radiocarbon-based chronology was developed for the core. The sediments were analyzed for organic-matter content by loss-on-ignition (LOI), biogenic-silica content (BSi), and chironomid community composition to reconstruct July air temperature and summer water temperature. The paleolimnological records were compared with records of atmospheric CO2 concentration, solar variability, and hemispheric temperature variations over the past 2000 years. The results of the analyses suggest that widely-documented long-term variations in Northern Hemisphere temperature associated with radiative forcing, namely the cooling following the medieval period during the Little Ice Age (LIA), and twentieth century warming, are represented in the central Canadian treeline zone. There is also evidence of a brief episode of warming during the eighteenth century. As evidenced by LOI and BSi, the twentieth century warming is typified by increased lake productivity relative to the LIA. Depending upon the measure, the increased productivity of the twentieth century nearly equals or exceeds that of any other period in the past 2000 years. In contrast, the rate of chironomid head capsule accumulation decreased and remained low during the twentieth century. Although the chironomid-inferred temperature reconstructions indicate cooling during the LIA, they present no evidence of greatly increased temperatures during the twentieth century. Warming during the twentieth century might have enhanced lake stratification, and the response of the chironomid fauna to warming was attenuated by decreased oxygen and lower temperatures in the hypolimnion of the more stratification-prone lake.


Late Holocene paleoclimate Arctic Treeline Canada Radiative forcing Biogenic silica Loss-on-ignition Chironomids 



This research was supported by NSF collaborative research grants to GMM (ARC-0455056), DFP (ARC-0455089), and DSK (ARC-0455043) in support of the ARCSS 2 kyr synthesis project. We thank John Smol, Kathleen Rühland, and Sonja Hausman for providing data and or useful discussion and suggestions for the analysis and interpretation of the records presented here. We thank two anonymous reviewers for helpful comments on an earlier version of this manuscript.


  1. Arctic Climate Impact Assessment (2004) Impacts of a warming arctic: arctic climate impact assessment. Cambridge University Press, CambridgeGoogle Scholar
  2. Barley E, Walker I, Kurek J, Cwynar L, Mathewes R, Gajewski K et al (2006) A northwest North American training set: distribution of freshwater midges in relation to air temperature and lake depth. J Paleolimnol. doi: 10.1007/s10933-006-0014-6 Google Scholar
  3. Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170. doi: 10.1111/j.1469-8137.1996.tb04521.x CrossRefGoogle Scholar
  4. Birks HJB (1998) Numerical tools in palaeolimnology—progress, potentialities, and problems. J Paleolimnol 20:307–332. doi: 10.1023/A:1008038808690 CrossRefGoogle Scholar
  5. Bonan GB, Chapin FS, Thompson SL (1995) Boreal forest and tundra ecosystems as components of the climate system. Clim Change 29:145–167. doi: 10.1007/BF01094014 CrossRefGoogle Scholar
  6. Briffa KR, Osborn TJ, Schweingruber FH, Harris IC, Jones PD, Shiyatov SG et al (2001) Low-frequency temperature variations from a northern tree ring density network. J Geophys Res 106(D3):2929–2941. doi: 10.1029/2000JD900617 CrossRefGoogle Scholar
  7. Broderson KP, Pedersen O, Walker IR, Jensen MT (2008) Respiration of midges (Diptera; Chironomidae) in British Columbian lakes: oxy-regulation, temperature and their role as palaeo-indicators. Freshw Biol 53:593–602. doi: 10.1111/j.1365-2427.2007.01922.x CrossRefGoogle Scholar
  8. Clayton JS, Ehrlich WA, Cann DB, Day JH, Marshall IB (1977) Soils of Canada. Soil Inventory Research Branch, Canada, vol II. Department of Agriculture, OttawaGoogle Scholar
  9. Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277. doi: 10.1126/science.289.5477.270 CrossRefGoogle Scholar
  10. Douglas MSV, Smol JP, Blake W Jr (1994) Marked post-eighteenth century environmental change in high-arctic ecosystems. Science 266:416–419. doi: 10.1126/science.266.5184.416 CrossRefGoogle Scholar
  11. Dyke AS, Moore A, Robertson L (2003) Deglaciation of North America. Geol Surv of Canada Open File, 1574Google Scholar
  12. Foley JA, Costa MH, Delire C, Ramankutty N, Snyder P (2003) Green surprise? How terrestrial ecosystems could affect earth’s climate. Front Ecol Environ 1:38–44Google Scholar
  13. Francis DR, Wolfe AP, Walker IR, Miller GH (2006) Interglacial and Holocene temperature reconstructions based on midge remains in sediments of two lakes from Baffin Island, Nunavut, Arctic Canada. Palaeogeogr Palaeoclimatol Palaeoecol 236:107–124. doi: 10.1016/j.palaeo.2006.01.005 CrossRefGoogle Scholar
  14. Hansen J, Ruedy R, Glascoe J, Sato M (1999) GISS analysis of surface temperature change. J Geophys Res 104:30997–31022. doi: 10.1029/1999JD900835 CrossRefGoogle Scholar
  15. Hansen J, Ruedy R, Sato M, Lo K (2006) GISS surface temperature analysis global temperature trends: 2005 summation, NASA Goddard Institute for Space Studies, New York (
  16. Heegaard E, Birks HJB, Telford RJ (2005) Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. Holocene 15:1–7. doi: 10.1191/0959683605hl836rr CrossRefGoogle Scholar
  17. Heiri O, Lotter AF (2001) Effect of low count sums on quantitative environmental reconstructions: an example using subfossil chironomids. J Paleolimnol 26:343–350. doi: 10.1023/A:1017568913302 CrossRefGoogle Scholar
  18. Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments; reproducibility and comparability of results. J Paleolimnol 25:101–110. doi: 10.1023/A:1008119611481 CrossRefGoogle Scholar
  19. Hoyt DV, Schatten KH (1998a) Group sunspot numbers: a new solar activity reconstruction. Part 1. Sol Phys 179:189–219. doi: 10.1023/A:1005007527816 CrossRefGoogle Scholar
  20. Hoyt DV, Schatten KH (1998b) Group sunspot numbers: a new solar activity reconstruction. Part 2. Sol Phys 181:491–512. doi: 10.1023/A:1005056326158 CrossRefGoogle Scholar
  21. Huang C, MacDonald GM, Cwynar LC (2004) Holocene landscape development and climatic change in the Low Arctic, Northwest Territories, Canada. Palaeogeogr Palaeoclimatol Palaeoecol 205:221–234. doi: 10.1016/j.palaeo.2003.12.009 CrossRefGoogle Scholar
  22. Intergovernmental Panel on Climate Change (2007) In: Pachauri RK and Reisinger A (eds) Climate change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, 104 ppGoogle Scholar
  23. Juggins S (1991) ZONE. Unpublished computer program, version 1.2. Department of Geography, University of Newcastle, Newcastle-upon-TyneGoogle Scholar
  24. Juggins S (2003) C2 version 1.3. Software for ecological and palaeoecological analysis and visualization. Department of Geography, University of Newcastle, Newcastle-upon-TyneGoogle Scholar
  25. Keeling CD, Whorf TP, the Carbon Dioxide Research Group (2004) Atmospheric CO2 concentrations (ppmv) derived from in situ air samples collected at Mauna Loa Observatory, Hawaii. Scripps Institution of Oceanography, University of California, La Jolla, California.
  26. Kling GW, Hayhoe K, Johnson LB, Magnuson JJ, Polasky S, Robinson SK et al (2003) Confronting climate change in the great lakes region: impacts on our communities and ecosystems. Union of Concerned Scientists, Cambridge, Massachusetts, and the Ecological Society of America, WashingtonGoogle Scholar
  27. Larocque I, Rolland N, Pienitz R (2006) Factors influencing the distribution of chironomids in lakes distributed along a latitudinal gradient in northwestern Québec, Canada. Can J Fish Aquat Sci 63:1286–1297. doi: 10.1139/F06-020 CrossRefGoogle Scholar
  28. Larsen CPS, MacDonald GM (1993) Lake morphometry, sediment mixing and the selection of sites for fine resolution palaeocological studies. Quat Sci Rev 12:781–792. doi: 10.1016/0277-3791(93)90017-G CrossRefGoogle Scholar
  29. Levis S, Foley JA, Pollard D (1999) Potential high-latitude vegetation feedbacks on CO2-induced climate change. Geophys Res Lett 26:747–750. doi: 10.1029/1999GL900107 CrossRefGoogle Scholar
  30. Levis S, Foley JA, Pollard D (2000) Large-scale vegetation feedbacks on a doubled CO2 climate. J Clim 13:1313–1325. doi:10.1175/1520-0442(2000)013<1313:LSVFOA>2.0.CO;2CrossRefGoogle Scholar
  31. Little JL, Hall RI, Quinian R, Smol JP (2000) Past trophic status and hypolimnetic anoxia during eutrophication and remediation of Gravenhurst Bay, Ontario: comparison of diatoms, chironomids, and historical records. Can J Fish Aquat Sci 57:333–341CrossRefGoogle Scholar
  32. Lugina KM, Groisman PY, Vinnikov KY, Koknaeva VV, Speranskaya NA (2006) Monthly surface air temperature time series area-averaged over the 30-degree latitudinal belts of the globe, 1881–2005. In Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy. Oak Ridge, Tennessee, (
  33. MacDonald GM, Beukens RP, Kieser WE (1991) Radiocarbon dating of limnic sediments: a comparative analysis and discussion. Ecology 72:1150–1155. doi: 10.2307/1940612 CrossRefGoogle Scholar
  34. MacDonald GM, Edwards TWD, Moser KA, Pienitz R, Smol JP (1993) Rapid response of treeline vegetation and lakes to past climate warming. Nature 361:243–246. doi: 10.1038/361243a0 CrossRefGoogle Scholar
  35. Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlén W (2005) Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433:613–617. doi: 10.1038/nature03265 CrossRefGoogle Scholar
  36. Monnin E, Steig EJ, Siegenthaler U, Kawamura K, Schwander J, Stauffer B et al (2004) Evidence for substantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO2 in the Taylor Dome, Dome C and DML ice cores. Earth Planet Sci Lett 224:45–54. doi: 10.1016/j.epsl.2004.05.007 CrossRefGoogle Scholar
  37. Mortlock RA, Froelich PN (1989) A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Res 36:1415–1426. doi: 10.1016/0198-0149(89)90092-7 CrossRefGoogle Scholar
  38. Moser KA, MacDonald GM (1990) Holocene vegetation change at treeline Northwest Territories, Canada. Quat Res 34:227–239. doi: 10.1016/0033-5894(90)90033-H CrossRefGoogle Scholar
  39. Oliver DR, Roussel ME (1983) The insects and arachnids of Canada, part 11: The genera of larval midges of Canada-Diptera: Chironomidae. Agriculture Canada Publication 1746, Ottawa, CanadaGoogle Scholar
  40. Overpeck J, Hughen K, Hardy D, Bradley R, Case R, Douglas M et al (1997) Arctic environmental change of the last four centuries. Science 278:1251–1256. doi: 10.1126/science.278.5341.1251 CrossRefGoogle Scholar
  41. Padgham WA, Fyson WK (1992) The slave province: a distinct Archean craton. Can J Earth Sci 29:2072–2086CrossRefGoogle Scholar
  42. Pienitz R, Smol JP, MacDonald GM (1999) Paleolimnological reconstruction of Holocene climatic trends from two boreal treeline lakes, Northwest Territories, Canada. Arct Antarct Alp Res 31:82–93. doi: 10.2307/1552625 CrossRefGoogle Scholar
  43. Porinchu DF, Cwynar LC (2000) Late-Quaternary history of midge communities and climate from a tundra site near the lower Lena River, Northeast Siberia. J Paleolimnol 27:59–69. doi: 10.1023/A:1013512506486 CrossRefGoogle Scholar
  44. Porinchu DF, MacDonald GM, Bloom AM, Moser KA (2002) The modern distribution of chironomid subfossils (Insecta: Diptera) in the Sierra Nevada, California: potential for paleoclimatic reconstructions. J Paleolimnol 28:255–275CrossRefGoogle Scholar
  45. Porinchu DF, MacDonald GM (2003) The use and application of freshwater midges (Chironomidae: Insecta: Diptera) in geographical research. Prog Phys Geogr 27:378–422. doi: 10.1191/030913303767888491 CrossRefGoogle Scholar
  46. Porinchu DF, Rolland N, Moser KA Development of a Chironomid-based air temperature inference model for the Central Canadian Arctic. J Paleolimnol (in press). doi: 10.1007/s10933-008-9233-3
  47. Prentice IC (1980) Multidimensional scaling as a research tool in Quaternary palynology: a review of theory and methods. Rev Palaeobot Palynol 31:71–104. doi: 10.1016/0034-6667(80)90023-8 CrossRefGoogle Scholar
  48. Prowse TD, Wrona FJ, Reist JD, Gibson JJ, Hobbie JE, Lévesque LMJ et al (2006) Climate change effects on hydroecology of Arctic freshwater ecosystems. Ambio 35:347–358. doi: 10.1579/0044-7447(2006)35[347:CCEOHO]2.0.CO;2 CrossRefGoogle Scholar
  49. Quinlan R, Smol JP (2001) Setting minimum head capsule abundance and taxa deletion criteria in chironomid-based inference models. J Paleolimnol 26:327–342. doi: 10.1023/A:1017546821591 CrossRefGoogle Scholar
  50. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG et al (2004) IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46:1029–1058Google Scholar
  51. Rigor I, Colony GRL, Martin S (2000) Variations in surface air temperature observations in the Arctic, 1979–97. J Clim 13:896–914. doi:10.1175/1520-0442(2000)013<0896:VISATO>2.0.CO;2CrossRefGoogle Scholar
  52. Rühland K, Smol JP (2005) Diatom shifts as evidence for recent Subarctic warming in a remote tundra lake, NWT, Canada. Palaeogeogr Palaeoclimatol Palaeoecol 226:1–16. doi: 10.1016/j.palaeo.2005.05.001 CrossRefGoogle Scholar
  53. Rühland K, Priesnitz A, Smol JP (2003) Evidence for recent environmental changes in 50 lakes the across Canadian arctic treeline. Arct Antarct Alp Res 35:110–123. doi: 10.1657/1523-0430(2003)035[0110:PEFDFR]2.0.CO;2 CrossRefGoogle Scholar
  54. Rühland K, Paterson AM, Smol JP Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes. Glob Change Biol (in press). doi: 10.1111/j.1365-2486.2008.01670.x
  55. Smol JP (1988) Paleoclimate proxy data from freshwater arctic diatoms. Verh Int Ver Theor Angew Limnol 23:837–844Google Scholar
  56. Smol JP (2008) Pollution of lakes and rivers: a paleoenvironmental perspective, 2nd edn. Blackwell Publishing, OxfordGoogle Scholar
  57. Smol JP, Douglas MSV (2007) From controversy to consensus: making the case for recent climatic change in the Arctic using lake sediments. Front Ecol Environ 5:466–474. doi: 10.1890/1540-9295(2007)5[466:FCTCMT]2.0.CO;2 CrossRefGoogle Scholar
  58. Smol JP, Wolfe AP, Birks HJB, Douglas MSV, Jones VJ, Korhola A et al (2005) Climate-driven regime shifts in the biological communities of arctic lakes. Poc Natl Accad Sci 102:4397–4402. doi: 10.1073/pnas.0500245102 CrossRefGoogle Scholar
  59. Solanki SK, Usoskin IG, Kromer B, Schüssler M, Beer J (2004) An unusually active Sun during recent decades compared to the previous 11, 000 years. Nature 431:1084–1087. doi: 10.1038/nature02995 CrossRefGoogle Scholar
  60. Sorvari S, Korhola A, Thompson R (2002) Lake diatom response to recent Arctic warming in Finnish Lapland. Glob Change Biol 8:171–181. doi: 10.1046/j.1365-2486.2002.00463.x CrossRefGoogle Scholar
  61. Stuvier M, Reimer PJ, Reimer R (2005) CALIB radiocarbon calibration 5.0.2,
  62. Szeicz JM, MacDonald GM (1995) Dendroclimatic reconstruction of summer temperatures in northwestern Canada since A.D. 1638 based on age dependent modelling. Quat Res 44:257–266. doi: 10.1006/qres.1995.1070 CrossRefGoogle Scholar
  63. Walker IR (2001) Midges: Chironomidae and related Diptera. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Volume 4: Zoological indicators, developments in paleoenvironmental research. Kluwer, Dordrecht, pp 43–66Google Scholar
  64. Walker IR, Levesque AJ, Cwynar LC, Lotter AF (1997) An expanded surface-water palaeotemperature inference model for use with fossil midges from eastern Canada. J Paleolimnol 18:165–178. doi: 10.1023/A:1007997602935 CrossRefGoogle Scholar
  65. Walker IR, MacDonald GM (1995) Distributions of Chironomidae (Insecta: Diptera) and other freshwater midges with respect to tree line, Northwest Territories, Canada. Arct Alp Res 27:258–263. doi: 10.2307/1551956 CrossRefGoogle Scholar
  66. Wedel JH, Smart A, Squires P (1990) An overview study of the yellowknife river basin, N.W.T. N.W.T. programs: inland waters directorate conservation and protection. Western and Northern Region, Environment Canada, OttawaGoogle Scholar
  67. Wilkinson L, Kjarsgaard BA, LeCheminant LN, Harris J (2001) Diabase dyke swarms in the Lac de Gras area, Northwest Territories, and their significance to kimberlite exploration: initial results. Geological Survey of Canada. Current Research, 2001-C8Google Scholar
  68. Woodward FI, Lomas MR, Betts RA (1998) Vegetation-climate feedbacks in a greenhouse world. Philos Trans R Soc B 353:29–38. doi: 10.1098/rstb.1998.0188 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Glen M. MacDonald
    • 1
    • 2
  • David F. Porinchu
    • 3
  • Nicolas Rolland
    • 3
  • Konstantine V. Kremenetsky
    • 1
    • 2
  • Darrell S. Kaufman
    • 4
  1. 1.Department of GeographyUniversity of California, Los AngelesLos AngelesUSA
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of California, Los AngelesLos AngelesUSA
  3. 3.Department of GeographyThe Ohio State UniversityNorth Oval Mall ColumbusUSA
  4. 4.Department of GeologyNorthern Arizona UniversityFlagstaffUSA

Personalised recommendations