Journal of Paleolimnology

, Volume 40, Issue 1, pp 115–127 | Cite as

Sedimentary diatoms along a temporal and spatial gradient of metal contamination

  • Antonella Cattaneo
  • Yves Couillard
  • Sybille Wunsam
Original Paper


We examined changes at the community and population level of sedimentary diatoms over a wide temporal and spatial gradient of metal pollution encountered in cores from three lakes in the Abitibi mining region (Québec, Canada). Diatom communities on the whole appeared to be very tolerant of metal contamination, as shown by diatom cell accumulation rates decreasing only under the most severe conditions of contamination, which were found from the 1930s to the 1980s in Lac Dufault (cadmium, up to 94 μg/g dry sediment; Cu, up to 8600 μg/g; Zn, up to 9000 μg/g). Under the moderate conditions of contamination observed in the other two lakes and in the most recent sediment of Lac Dufault, diatom cell accumulation rates tended to increase over values typical of the pre-mining period. However, there were increasing rearrangements of the community composition along the contamination gradient. Under moderate metal enrichment, the diatom community of Lac Vaudray experienced only subtle changes, with Cyclotella stelligera, albeit decreasing, remaining the dominant taxon. In the intermediately contaminated Lac Caron, several benthic taxa, noticeably Cymbella silesiaca and several Fragilaria species, rose in taxonomic importance. The most extreme contamination observed in Lac Dufault led to a severely impoverished community almost entirely represented by Achnanthes minutissima and Brachysira vitrea. With increasing levels of contamination, there was a shift from planktonic to benthic taxa and morphotypes and a consistent decrease in the siliceous stomatocysts/diatom frustules ratio. These trends suggest that littoral zones may represent an important refugium under conditions of high contamination. Responses to metal stress were in general more evident at the population than at the community level. Cyclotella stelligera and B. vitrea had a consistent negative and positive response, respectively, along the gradient and are the most promising indicators of metal pollution for this region.


Benthic Diatom cell accumulation rates Diatoms Metals Mining Planktonic Siliceous stomatocysts 



We are grateful for the support obtained from the laboratories of P.G.C. Campbell (INRS-ETE, Quebec) and B. Pinel-Alloul (Université de Montréal). We thank O. Perceval, I. Louis and A. van den Abeele for their help in the field, and M. Geoffroy-Bordeleau for her technical assistance in the laboratory. Pierre Richard (Université de Montréal) kindly lent us the corer. John C. Bowman assisted with the preparation of the stratigraphic plots using the vector graphics language Asymptote ( This study was funded by an operating grant from the Natural Sciences and Engineering Research Council of Canada to A. C. and by the program PARDE (Programme d’aide à la recherche et au développement en environnement) of the Ministry of Sustainable Development, Environment, and Parks of the Province of Québec (Project title: Développement d’outils in situ d’écotoxicologie diagnostique en regard de la pollution métallique).


  1. Austin A, Deniseger J, Clark MJR (1985) Lake algal populations and physico-chemical changes after 14 years input of metallic mining wastes. Water Res 19:299–308CrossRefGoogle Scholar
  2. Battarbee RW, Jones VJ, Flower RJ, Cameron NG, Bennion H, Carvalho L, Juggins S (2001) Diatoms. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments: volume 3: terrestrial, algal, and siliceous indicators. Developments in paleoenvironmental research. Kluwer, Dordrecht, pp 155–202Google Scholar
  3. Borgmann U, Nowierski M, Grapentine LC, Dixon DG (2004) Assessing the cause of impacts on benthic organisms near Rouyn-Noranda, Quebec. Environ Pollut 129:39–48CrossRefGoogle Scholar
  4. Cattaneo A, Asioli A, Comoli P, Manca M (1998) Organisms’ response in a chronically polluted lake supports hypothesized link between stress and size. Limnol Oceanogr 43:1938–1943Google Scholar
  5. Cattaneo A, Couillard Y, Wunsam S, Courcelle M (2004) Diatom taxonomic and morphological changes as indicators of metal pollution and recovery in Lac Dufault (Québec, Canada). J Paleoliminol 32:163–175CrossRefGoogle Scholar
  6. CCME (Canadian Council of Ministers of the Environment) (1999) Canadian Environmental Quality Guidelines. CCME, Winnipeg, MAGoogle Scholar
  7. Charles DF (1985) Relationships between surface sediment diatom assemblages and lakewater characteristics in Adirondack lakes. Ecology 66:994–1011CrossRefGoogle Scholar
  8. Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74:829–836CrossRefGoogle Scholar
  9. Couillard Y, Courcelle M, Cattaneo A, Wunsam S (2004) A test of the integrity of metal records in sediment cores based on the documented history of metal contamination in Lac Dufault (Québec, Canada). J Paleoliminol 32:149–162CrossRefGoogle Scholar
  10. Couillard Y, Cattaneo A, Gallon C, Courcelle M (2007) Sources and chronology of fifteen elements in the sediments of lakes affected by metal deposition in a mining area. J Paleoliminol. doi: 10.1007/s10933-007-9146-6
  11. Davies SJ, Metcalfe SE, MacKenzie AB, Newton AJ, Endfield GH, Farmer JG (2004) Environmental changes in the Zirahuéen Basin, Michoacán, Mexico, during the last 1000 years. J Paleoliminol 31:77–98CrossRefGoogle Scholar
  12. Dixit AS, Alpay S, Dixit SS, Smol JP (2007) Paleolimnological reconstructions of Rouyn-Noranda lakes within the zone of influence of the Horne Smelter, Québec, Canada. J Paleoliminol 38:209–226CrossRefGoogle Scholar
  13. Enache M, Prairie YT (2002) WA-PLS diatom-based pH, TP and DOC inference models from 42 lakes in the Abitibi clay belt area (Québec, Canada). J Paleoliminol 27: 151–171Google Scholar
  14. Environment Canada (1997) Management of Toxic Substances – Base Metals Smelting Sector Strategic Options Report. Appendix 6.10. Noranda Metallurgy, Horne Smelter, Rouyn-Noranda, QuebecGoogle Scholar
  15. Fisher WD (1958) On grouping for maximum homogeneity. J Am Stat Assoc 53:789–798CrossRefGoogle Scholar
  16. Ivorra N, Bremer S, Guasch H, Kraak MHS, Admiraal W (2000) Differences in the sensitivity of benthic microalgae to Zn and Cd regarding biofilm development and exposure history. Environ Toxicol Chem 19:1332–1339CrossRefGoogle Scholar
  17. Krammer K, Lange-Bertalot H (1986) Bacillariophyceae. Süsswasserflora von Mitteleuropa. Band 2. Gustav Fisher Verlag, JenaGoogle Scholar
  18. Krammer K, Lange-Bertalot H (1988) Bacillariophyceae 3.Teil Centrales, Fragilariaceae, Eunotiaceae. Bacillariophyceae. Süsswasserflora von Mitteleuropa. Band 2/1. Gustav Fisher Verlag, JenaGoogle Scholar
  19. Krammer K, Lange-Bertalot H (1991a) Bacillariophyceae 3.Teil Centrales, Fragilariaceae, Fragilariaceae, Eunotiaceae. Süsswasserflora von Mitteleuropa. Band 2/3. Gustav Fisher, JenaGoogle Scholar
  20. Krammer K, Lange-Bertalot H (1991b) Bacillariophyceae 4.Teil Achnantaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. Süsswasserflora von Mitteleuropa. Band 2/4. Gustav Fisher, JenaGoogle Scholar
  21. Koppen JD (1975) A morphological and taxonomic consideration of Tabellaria (Bacillariophyceae) from the northcentral United States. J Phycol 11:236–244Google Scholar
  22. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280CrossRefGoogle Scholar
  23. Ludden J, Hynes A (2000) The lithoprobe Abitibi-Grenville transect: two billion years of crust formation and recycling in the Precambrian Shield of Canada. Can J Earth Sci 37:459–476CrossRefGoogle Scholar
  24. MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Le Cam LM, Neyman J (eds) Proc 5th Berkeley Symp Math Stat Probability, vol 1. University of California Press, Berkeley, pp 281–297Google Scholar
  25. Moos MT, Laird KR, Cumming BF (2005) Diatom assemblages and water depth in Lake 239 (Experimental Lakes Area, Ontario): implications for paleoclimatic studies. J Paleoliminol 34:217–227CrossRefGoogle Scholar
  26. Nakanishi Y, Sumita M, Yumita K, Yamada T, Honjo T (2004) Heavy-metal pollution and its state in algae in Kakehashi River and Godani River at the foot of Ogoya mine, Ishikawa Prefecture. Anal Sci 20:73–78CrossRefGoogle Scholar
  27. Niyogi DK, Lewis WM, McKnight DM (2002) Effects of stress from mine drainage on diversity, biomass, and function of primary producers in mountain streams. Ecosystems 5:554–567Google Scholar
  28. Patrick R, Reimer C (1966) The diatoms of the United States, vol 1. Acad Nat Sci Philadelphia Monogr 13:1–688Google Scholar
  29. Patrick R, Reimer C (1975) The diatoms of the United States. vol 2, part 1. Acad Nat Sci Philadelphia Monogr 13:1–213Google Scholar
  30. Perceval O, Couillard Y, Pinel-Alloul B, Giguère A, Campbell PGC (2004) Metal-induced stress in bivalves living along a gradient of Cd contamination: relating sub-cellular metal distribution to population-level responses. Aquatic Toxic 69:327–345CrossRefGoogle Scholar
  31. Philibert A, Prairie YT (2002) Is the introduction of benthic species necessary for open-water chemical reconstruction in diatom-based transfer functions? Can J Fish Aquat Sci 59:938–951CrossRefGoogle Scholar
  32. Philibert A, Priarie YT, Campbell I, Laird L (2003) Effects of late Holocene wildfires on diatom assemblages in Christina Lake, Alberta, Canada. Can J For Res 33:2405–2415CrossRefGoogle Scholar
  33. Reavie ED, Robbins JA, Stoermer EF, Douglas MSV, Emmert GE, Morehead NR, Mudroch A (2005) Paleolimnology of a fluvial lake downstream of Lake Superior and the industrialized region of Sault Saint Marie. Can J Fish Aquat Sci 62:2586–2608CrossRefGoogle Scholar
  34. Rijstenbil JW, Sandee A, Vandrie J, Wijnholds JA (1994) Interaction of toxic trace metals and mechanisms of detoxification in the planktonic diatoms Ditylum brightwellii and Thalassiosira pseudonana. FEMS Microbiol Rev 14:387–396CrossRefGoogle Scholar
  35. Ruggiu D, Luglié A, Cattaneo A, Panzani P (1998) Paleoecological evidence for diatom response to metal pollution in Lake Orta (N. Italy). J Paleolim 20:333–345CrossRefGoogle Scholar
  36. Salonen V-P, Tuovinen N, Valpola S (2006) History of mine drainage impact on Lake Orijävi algal communities, SW Finland. J Paleolim 35:289–303CrossRefGoogle Scholar
  37. Sherwood GD, Kovecses J, Hontela A, Rasmussen JB (2002) Simplified food webs lead to energetic bottlenecks in polluted lakes. Can J Fish Aquat Sci 59:1–5CrossRefGoogle Scholar
  38. Smol JP (1985) The ratio of diatom frustules to chrysophycean statospores: A useful paleolimnological index. Hydrobiologia 123:199–208CrossRefGoogle Scholar
  39. Takamura N, Hatakeyama S, Sugaya Y (1990) Seasonal changes in species composition and production of periphyton in an urban river running through an abandoned copper mining region. Jpn J Limnol 51:225–235Google Scholar
  40. Ter Braak CJF, Smilauer P (2002) CANOCO Reference manual and user’s guide to Canoco for Windows, version 4.5. Microcomputer Power, Ithaca, NYGoogle Scholar
  41. Veillette JJ, McClenaghan MB (1996) Sequence of glacial ice flow in Abitibi-Timiskaming: implications for mineral exploration and dispersal of calcareous rocks from the Hudson Bay basin, Quebec and Ontario. Open file 3033. Map 1:500 000. Geological Survey of Canada, Ottawa Google Scholar
  42. Yang JR, Duthie HC, Delorme LD (1993) Reconstruction of the recent environmental history of Hamilton Harbor (Lake-Ontario, Canada) from analysis of siliceous microfossils. J Great Lakes Res 19:55–71CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Antonella Cattaneo
    • 1
  • Yves Couillard
    • 2
  • Sybille Wunsam
    • 3
  1. 1.Département de Sciences BiologiquesUniversité de MontréalMontrealCanada
  2. 2.Existing Substances DivisionEnvironment CanadaGatineauCanada
  3. 3.EdmontonCanada

Personalised recommendations