Advertisement

Journal of Paleolimnology

, Volume 37, Issue 2, pp 221–231 | Cite as

Progress in isotope paleohydrology using lake sediment cellulose

  • Brent B. Wolfe
  • Matthew D. Falcone
  • Ken P. Clogg-Wright
  • Cherie L. Mongeon
  • Yi Yi
  • Bronwyn E. Brock
  • Natalie A. St. Amour
  • William A. Mark
  • Thomas W. D. Edwards
ORIGINAL PAPER

Abstract

Recent advances in sample preparation techniques and mass spectrometry have fostered more routine oxygen isotope analysis of aquatic cellulose in lake sediment cores, a proxy for lake water oxygen isotope history. These methodological developments have significantly increased the feasibility of incorporating this approach into high-resolution, multi-site, and multi-proxy studies, which are frequently necessary to answer complex hydrological, hydroecological and hydroclimatic questions requiring a paleoenvironmental perspective. Direct translation of lake sediment aquatic cellulose oxygen isotope composition into lake water oxygen isotope composition offers appreciable opportunity for quantitative paleohydrological reconstructions, as evidenced by studies conducted over the past 15 years that span Holocene and pre-historical timescales.

Keywords

Cellulose Oxygen isotope composition Lake sediments Paleohydrology Heavy liquid density-separation CF-IRMS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We would like to extend our thanks to funding agencies which have supported our isotope paleohydrology research over the past two decades. These primarily include the Natural Sciences and Engineering Research Council of Canada, the US National Science Foundation, and the Canada Foundation for Innovation and Ontario Innovation Trust, as well as BC Hydro, our industrial partner in ongoing paleoenvironmental studies of the Peace-Athabasca Delta. We are also especially grateful for the superb technical support provided by the staff of the University of Waterloo—Environmental Isotope Laboratory. Comments from two anonymous reviewers helped to improve the manuscript.

References

  1. Abbott MB, Seltzer GO, Kelts KR, Southon J (1997) Holocene paleohydrology of the tropical Andes from lake records. Quat Res 47:70–80CrossRefGoogle Scholar
  2. Abbott MB, Wolfe BB, Aravena R, Wolfe AP, Seltzer GO (2000) Holocene hydrological reconstructions from stable isotopes and palaeolimnology, Cordillera Réal, Bolivia. Quat Sci Rev 19:1801–1820CrossRefGoogle Scholar
  3. Abbott MB, Wolfe BB, Wolfe AP, Seltzer GO, Aravena R, Mark BG, Polissar PJ, Rodbell DT, Rowe HD, Vuille M (2003) Holocene paleohydrology and glacial history of the central Andes using multiproxy lake sediment studies. Palaeogeog Palaeoclim Palaeoecol 194:123–138CrossRefGoogle Scholar
  4. Anderson L, Abbott MB, Finney BP (2001) Holocene climate inferred from oxygen isotope ratios in lake sediments, central Brooks Range, Alaska. Quat Res 53:313–321CrossRefGoogle Scholar
  5. Baker PA, Seltzer GO, Fritz SC, Dunbar RB, Grove MJ, Tapia PM, Cross SL, Rowe HD, Broda JP (2001) The history of South American tropical precipitation for the past 25,000 years. Science 291:640–643CrossRefGoogle Scholar
  6. Beuning KRM, Kelts K, Ito E, Johnson TC (1997) Paleohydrology of Lake Victoria, East Africa, inferred from 18O/16O ratios in sediment cellulose. Geology 25:1083–1086CrossRefGoogle Scholar
  7. Beuning KRM, Kelts K, Russell J, Wolfe BB (2002) Reassessment of Lake Victoria – upper Nile River paleohydrology from oxygen isotope records of lake-sediment cellulose. Geology 30:559–562CrossRefGoogle Scholar
  8. Buhay WM, Betcher RN (1998) Paleohydrologic implications of 18O enriched Lake Agassiz water. J Paleolimnol 19:285–296CrossRefGoogle Scholar
  9. Cross SL, Baker PA, Seltzer GO, Fritz SC, Dunbar RB (2000) A new estimate of the Holocene lowstand level of Lake Titicaca, central Andes, and implications for Tropical palaeohydrology. The Holocene 10:21–32CrossRefGoogle Scholar
  10. Duthie HC, Yang J-R, Edwards TWD, Wolfe BB, Warner BG (1996) Hamilton Harbour, Ontario: 8300 years of limnological and environmental change inferred from microfossil and isotopic analyses. J Paleolimnol 15:79–97CrossRefGoogle Scholar
  11. Edwards TWD, Aravena RO, Fritz P, Morgan AV (1985) Interpreting paleoclimate from 18O and 2H in plant cellulose: comparison with evidence from fossil insects and relict permafrost in southwestern Ontario. Can J Earth Sci 22:1720–1726Google Scholar
  12. Edwards TWD, Buhay WM, Elgood RJ, Jiang HB (1994) An improved nickel-tube pyrolysis method for oxygen isotope analysis of organic matter and water. Chem Geol (Iso Geosci Sect) 114:179–183Google Scholar
  13. Edwards TWD, Fritz P (1986) Assessing meteoric water composition and relative humidity from 18O and 2H in wood cellulose: paleoclimatic implications for southern Ontario, Canada. Appl Geochem 1:715–723CrossRefGoogle Scholar
  14. Edwards TWD, Fritz P (1988) Stable-isotope paleoclimate records for southern Ontario, Canada: comparison of results from marl and wood. Can J Earth Sci 25:1397–1406CrossRefGoogle Scholar
  15. Edwards TWD, McAndrews JH (1989) Paleohydrology of a Canadian Shield lake inferred from 18O in sediment cellulose. Can J Earth Sci 26:1850–1859Google Scholar
  16. Edwards TWD, Wolfe BB, Gibson JJ, Hammarlund D (2004) Use of water isotope tracers in high-latitude hydrology and paleohydrology. In: Pienitz R, Douglas M, Smol JP (eds) Long-term environmental change in Arctic and Antarctic lakes, developments in paleoenvironmental research, vol 7. Springer, Dordrecht, pp 187–207Google Scholar
  17. Edwards TWD, Wolfe BB, MacDonald GM (1996) Influence of changing atmospheric circulation on precipitation δ18O-temperature relations in Canada during the Holocene. Quat Res 46:211–218CrossRefGoogle Scholar
  18. Farquhar GD, Henry BK, Styles JM (1997) A rapid on-line technique for determination of oxygen isotope composition of nitrogen-containing organic matter and water. Rapid Commun Mass Spectrom 11:1554–1560CrossRefGoogle Scholar
  19. Green JW (1963) Wood cellulose. In: Whistler RL (ed) Methods in carbohydrate chemistry, vol III. Academic Press, New York, pp 9–20Google Scholar
  20. Hall RI, Wolfe BB, Edwards TWD, 17 others (2004) A multi-century flood, climatic, and ecological history of the Peace-Athabasca Delta, northern Alberta, Canada. Final Report. Published by BC Hydro. 163 pp + AppendicesGoogle Scholar
  21. Hay MB, Smol JP, Pipke KJ, Lesack LFW (1997) A diatom-based paleohydrological model for the Mackenzie Delta, Northwest Territories. Arc Alp Res 29: 430–444CrossRefGoogle Scholar
  22. MacDonald GM, Edwards TWD, Gervais B, Laing TE, Pisaric MFJ, Porinchu DF, Snyder JA, Solovieva N, Tarasov P, Wolfe BB (2004) Recent paleolimnological research from northern Russian Eurasia and Siberia. In: Pienitz R, Douglas M, Smol JP (eds) Long-term environmental change in Arctic and Antarctic lakes, developments in paleoenvironmental research, vol 7. Springer, Dordrecht, pp 349–380Google Scholar
  23. MacDonald GM, Edwards TWD, Moser KA, Pienitz R, Smol JP (1993) Rapid response of treeline vegetation and lakes to past climate warming. Nature 361:243–246CrossRefGoogle Scholar
  24. Meyers PA, Teranes, JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments: physical and chemical techniques, developments in paleoenvironmental research, vol 2. Kluwer Academic Publishers, Dordrecht, pp 239–269CrossRefGoogle Scholar
  25. Morley DW, Leng MJ, Mackay AW, Sloane HJ, Rioual P, Batterbee RW (2004) Cleaning lake sediment samples for diatom oxygen isotope analysis. J Paleolimnol 31:391–401CrossRefGoogle Scholar
  26. Prowse TD, Conly FM (1998) Impacts of climatic variability and flow regulation on ice-jam flooding of a northern delta. Hydrol Proc 12:1589–1610CrossRefGoogle Scholar
  27. Prowse TD, Conly FM (2000) Multiple-hydrologic stressors of a northern delta ecosystem. J Aquat Ecosyst Str Recov 8:17–26CrossRefGoogle Scholar
  28. Prowse TD, Lalonde V (1996) Open-water and ice-jam flooding of a northern delta. Nord Hydrol 27:85–100Google Scholar
  29. Sauer PE, Miller GH, Overpeck JT (2001) Oxygen isotope ratios of organic matter in arctic lakes as a paleoclimate proxy: field and laboratory investigations. J Paleolimnol 25:43–64CrossRefGoogle Scholar
  30. Saurer M, Robertson I, Siegwolf R, Leuenberger M (1998) Oxygen isotope analysis of cellulose: an interlaboratory comparison. Analyt Chem 70:2074–2080CrossRefGoogle Scholar
  31. Sternberg LSL (1989) Oxygen and hydrogen isotope ratios in plant cellulose: mechanisms and applications. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable isotopes in ecological research. Springer-Verlag, New York, pp 124–141Google Scholar
  32. Sternberg LSL, Anderson WT, Morrison K (2003) Separating soil and leaf water 18O isotopic signals in plant stem cellulose. Geochem Cosmo Acta 67:2561–2566CrossRefGoogle Scholar
  33. Talbot MR (2001) Nitrogen isotopes in paleolimnology. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments: physical and chemical techniques, developments in paleoenvironmental research, vol 2. Kluwer Academic Publishers, Dordrecht, pp 401–439CrossRefGoogle Scholar
  34. Thompson LG, Davis ME, Mosley-Thompson E, Sowers TA, Henderson KA, Zagorodnov VS, Lin P-N, Mikhalenko VN, Campen RK, Bolzan JF, Cole-Dai J, Francou B (1998) A 25,000-year tropical climate history from Bolivian ice cores. Science 282:1858–1864CrossRefGoogle Scholar
  35. Thompson P, Gray J (1977) Determination of 18O/16O ratios in compounds containing C, H, and O. Internat J App Rad Isot 28:411–415CrossRefGoogle Scholar
  36. Vincent JF (1999) From cellulose to cell. J Exp Biol 202:3263–3268Google Scholar
  37. Wolfe BB, Aravena R, Abbott MB, Seltzer GO, Gibson JJ (2001a) Reconstruction of paleohydrology and paleohumidity from oxygen isotope records in the Bolivian Andes. Palaeogeog Palaeoclim Palaeoecol 176:177–192CrossRefGoogle Scholar
  38. Wolfe BB, Edwards TWD, Aravena R, Forman SL, Warner BG, Velichko AA, MacDonald GM (2000) Holocene paleohydrology and paleoclimate at treeline, north-central Russia, inferred from oxygen isotope records in lake sediment cellulose. Quat Res 53:319–329CrossRefGoogle Scholar
  39. Wolfe BB, Edwards TWD, Aravena R, MacDonald GM (1996) Rapid Holocene hydrologic change along boreal treeline revealed by δ13C and δ18O in organic lake sediments, Northwest Territories, Canada. J Paleolimnol 15:171–181Google Scholar
  40. Wolfe BB, Edwards TWD, Elgood RJ, Beuning KRM (2001b) Carbon and oxygen isotope analysis of lake sediment cellulose: methods and applications. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments: physical and chemical techniques, developments in paleoenvironmental research, vol 2. Kluwer Academic Publishers, Dordrecht, pp 373–400CrossRefGoogle Scholar
  41. Wolfe BB, Edwards TWD, Hall RI (2002) Past and present ecohydrology of the Peace-Athabasca Delta, northern Alberta, Canada: water isotope tracers lead the way. PAGES News 10:16–17Google Scholar
  42. Wolfe BB, Edwards TWD, Jiang H, MacDonald GM, Gervais BR, Snyder JA (2003) Effect of varying oceanicity on early to mid-Holocene palaeohydrology, Kola Peninsula, Russia: isotopic evidence from treeline lakes. Holocene 13:153–160CrossRefGoogle Scholar
  43. Wolfe BB, Karst-Riddoch TL, Vardy SR, Falcone MD, Hall RI, Edwards TWD (2005) Impacts of climate and river flooding on the hydro-ecology of a floodplain basin, Peace-Athabasca Delta, Canada: A.D. 1700-present. Quat Res 64:147–162CrossRefGoogle Scholar
  44. Yakir D (1992) Variations in the natural abundance of oxygen-18 and deuterium in plant carbohydrates. Pl Cell Environ 15:1005–1020CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Brent B. Wolfe
    • 1
    • 2
  • Matthew D. Falcone
    • 2
  • Ken P. Clogg-Wright
    • 2
  • Cherie L. Mongeon
    • 1
  • Yi Yi
    • 2
  • Bronwyn E. Brock
    • 2
  • Natalie A. St. Amour
    • 2
  • William A. Mark
    • 2
  • Thomas W. D. Edwards
    • 2
  1. 1.Department of Geography and Environmental StudiesWilfrid Laurier UniversityWaterlooCanada
  2. 2.Department of Earth SciencesUniversity of WaterlooWaterlooCanada

Personalised recommendations