Advertisement

Journal of Paleolimnology

, Volume 36, Issue 3, pp 315–318 | Cite as

Peridinioid dinoflagellate cysts in a Holocene high-mountain lake deposit in Italy

  • Massimiliano Tardio
  • Francesca Sangiorgi
  • Henk Brinkhuis
  • Maria Letizia Filippi
  • Marco Cantonati
  • André F. Lotter
note

Abstract

This paper documents the discovery of peridinioid organic walled dinoflagellate cysts in Holocene sediments of the freshwater, low-alkalinity, high mountain Lake Nero di Cornisello (Adamello mountain range, Trentino, Italy). Among the three main cyst morphotypes found in the samples, the dominant one is acavate, with a smooth and light brown colored wall, with a clear conical shape, elongated with a pointy to rounded end in the antapical-ventral part, with the epicyst broader than the hypocyst and displays a typical peridinioid archeopyle. Comparison with data available in literature, besides pointing out the general scarcity of observations on dinocysts in lakes sediments, suggested a strong morphological similarity with the marine genus Brigantedinium. This finding pinpoints the need for more detailed studies on cysts in freshwater environments offering a new tool for paleoenvironmental interpretations.

Keywords

Peridinioid dinoflagellate cysts Freshwater Lake sediments Central-eastern Alps Holocene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The work for this paper was carried out in the frame of the Ph.D. thesis of the first author at the University of Pisa (Italy; Doctoral Study Programme in Evolutionary Biology—Protistology). We are grateful to the Autonomous Province of Trento for funding the OLOAMBIENT project; we thank Natasja Welters and Jan van Tongeren for laboratory assistance, the MTSN research fellows, who assisted us during field work and the Fireman Permanent Group of Trento Province for assistance in field operation.

References

  1. Aceti A, Arpenti E, Orombelli G, Pini R, Ravazzi C (2005) Holocene climatic oscillations in the high mountains: new evidences and chronological constrains from the Southern side of the Alps. In “Open science conference: global change in mountain regions”, Perth, Scotland, UK, 2–6 October 2005Google Scholar
  2. Batten DJ, Lister JK (1988) Early Cretaceous dinoflagellate cysts and chlorococcalean algae from freshwater and low salinity palynofacies in the English Wealden. Cretaceous Res 9:337–367CrossRefGoogle Scholar
  3. Batten DJ, Gray J, Harland R (1999) Palaeoenvironmental significance of a monospecific assemblage of dinoflagellate cysts from the Miocene Clarkia Beds, Idaho, USA. Palaeogeogr Palaeocl Palaeoecol 153:161–177CrossRefGoogle Scholar
  4. Callegari E, Brack P (2002) Geological map of the Tertiary Adamello Batholith (Northern Italy—Explanatory notes and legend. Mem Sci Geol 54:19–49Google Scholar
  5. Cantonati M, Tolotti M, Lazzara M (eds) (2002) I laghi del Parco Naturale Adamello-Brenta. Documenti del Parco 14: 1-285. ISBN 88-900841-0-3Google Scholar
  6. Evitt WR, Gocht H, Netzel H (1985) Gonyaulax cysts from lake Zürich sediments. Rev Palaeobot Palynol 45:35–46CrossRefGoogle Scholar
  7. Fensome RA, Taylor FJR, Norris G, Sarjeant WAS, Wharton DI, Williams GL (1993) A classification of living and␣fossil dinoflagellates. Micropaleontology, Special Publication 7Google Scholar
  8. Findlay DL, Kling HJ, Rönicke H, Findlay WJ (1998) A paleolimnological study of eutrophied Lake Arendsee (Germany). J Paleolimnol 19:41–54CrossRefGoogle Scholar
  9. Köhler J, Clausing A (2000) Taxonomy and palaeoecology of dinoflagellate cysts from Upper Oligocene freshwater sediments of Lake Enspel, Westerwald area, Germany. Rev Palaeobot Palynol 112:39–49CrossRefGoogle Scholar
  10. Kouli K, Brinkhuis H, Dale B (2001) Spiniferites cruciformis: a freshwater dinoflagellate cyst? Rev Palaeobot Palynol 113:273–286CrossRefGoogle Scholar
  11. Marret F, Leroy S, Chalié F, Gasse F (2004) New organic-walled dinoflagellate cysts from recent sediments of Central Asian seas. Rev Palaeobot Palynol 129:1–20CrossRefGoogle Scholar
  12. Mudie PJ, Rochon A, Aksu AE, Gillespie H (2004) Late glacial, Holocene and modern dinoflagellate cyst assemblages in the Aegean-Marmara-Black Sea corridor: statistical analysis and re-interpretation of the early Holocene Noah’s Flood Hypothesis. Rev Palaeobot Palynol 128:143–167CrossRefGoogle Scholar
  13. Norris G, McAndrews J (1970) Dinoflagellate cysts from post-Glacial lake muds, Minnesota (U.S.A). Rev Palaeobot Palynol 10:131–156CrossRefGoogle Scholar
  14. Tardio M, Cantonati M, Filippi ML (2006) Seasonal dynamics of two dinoflagellates in a very low alkalinity high mountain lake (L. Nero di Cornisello, Adamello-Brenta Natural Park, NE Italy). Hydrobiologia. AcceptedGoogle Scholar
  15. Wall D, Dale B (1968) Modern dinoflagellate cyst and evolution of the Peridiniales. Micropaleontology 14:265–304CrossRefGoogle Scholar
  16. Zippi P, Yung YK, McAndrews J, Stokes P, Norris G (1990) An investigation of the potential of Zygnematacean zygospores, Peridinium, and Pediastrum as paleo-indicators of recent lake acidification. Environmental Research, Technology Transfer Conference, Proceedings 1:393–396Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Massimiliano Tardio
    • 1
    • 2
  • Francesca Sangiorgi
    • 3
  • Henk Brinkhuis
    • 3
  • Maria Letizia Filippi
    • 4
  • Marco Cantonati
    • 1
  • André F. Lotter
    • 3
  1. 1.Limnology and Phycology SectionMuseo Tridentino di Scienze NaturaliTrentoItaly
  2. 2.Department of Etology, Ecology and EvolutionUniversity of PisaPisaItaly
  3. 3.Laboratory of Palaeobotany and Palynology, Department of BiologyUtrecht UniversityUtrechtThe Netherlands
  4. 4.Geology SectionMuseo Tridentino di Scienze NaturaliTrentoItaly

Personalised recommendations