Advertisement

Journal of Paleolimnology

, Volume 35, Issue 4, pp 669–697 | Cite as

Responses of Two New Hampshire (USA) Lakes to Human Impacts in Recent Centuries

  • Ronald B. Davis
  • Dennis S. Anderson
  • Sushil S. Dixit
  • Peter G. Appleby
  • Molly Schauffler
Article

Abstract

This study contrasts the effects of human disturbances on two very different lake/catchment systems: Hatch Pond and Beaver Lake, New Hampshire. Hatch is in a steep mountain catchment remote from urban/industrial centers, and is a small, relatively deep, primarily seepage lake with moderate flushing rate. The catchment has been continuously forested, but disturbed by partial loggings and a forest fire. Beaver’s more extensive and gently sloping catchment is much closer to urban/industrial centers, and has been agricultural and recently suburban. Beaver is a larger but shallower drainage lake with much more rapid flushing than Hatch. We compared the sedimentary records and inferred limnological responses to catchment land uses and air pollution inputs of these mesotrophic lakes, and interpreted differing responses as a function of basic differences between the lakes and their catchments. Some chemical and biological variables in the sediment of both lakes respond sensitively to the first disturbances of the catchments by Euro-American settlers. Diatom-inferred Cl at both lakes indicates a modest increase of salinity at this time. Hatch sediment contains a record of soil erosion starting \(\simeq\) 1810 with first logging and fire. For ~125 years, erosion was largely of upper eluviated soil, but by \(\simeq\) 1935 it reached deeper into the illuviated (enriched) horizon. Maximal lake trophic state based on diatom-inferred limnological variables occurred in the mid-1900’s period of maximum sedimentation of illuviated soil. The sediment record since \(\simeq\) 1964 reflects forest maturation, and soil stabilization and acidification, but not lake acidification. At Beaver, the limnological effects of forest clearance and agriculture starting ~1700 were relatively mild due to gentleness of slopes and soil characteristics favoring stability. A near doubling of earth elements, and major increases in trace metal pollutants and coal combustion particles (CCP) occurred in sediment dating around 1900. Landscape analysis as well as historical and sedimentary records preclude the catchment as the major source of these increases. The most likely source is atmospheric fallout of CCP with its metal load. Despite controls on CCP and other emissions starting 1960, concentrations of earth elements and trace metals in Beaver sediment remain high due to soil mobilization by residential development of the catchment. The trophic state of Beaver Lake has increased, but the relative increase has been smaller than at Hatch, despite more intensive land uses and greater aerial inputs at Beaver. We propose that this lesser eutrophication is due to rapid flushing of Beaver Lake with stream water from relatively undeveloped parts of the extensive catchment, and lower sensitivity to nutrient inputs of this naturally more eutrophic lake. A major shift from unicellular to colonial chrysophytes at Hatch starts in the late-1800’s, and at Beaver in the early 1900’s. Colonial taxa in lesser quantities appear at the time of first settlement of the Beaver catchment. At both lakes the shifts are correlated with increasing metal fluxes from the opening of catchment biogeochemical cycles, as with the aforementioned erosional sequence at Hatch. But at Hatch aerial inputs of trace metals, and at Beaver aerial inputs major and trace metals associated with CCP are also correlated with the major chrysophyte shift. It appears that the chrysophytes have responded to stressors associated with both catchment disturbance and regional atmospheric inputs.

Keywords

Aerial inputs Catchment inputs Catchment soils Chrysophytes Diatoms Flushing rates Geochemistry Human impacts New Hampshire Paleolimnology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D.S., Davis, R.B., Ford, M.S. 1993Relationships of sedimented diatom species (Bacillariophyceae) to environmental gradients in dilute northern New England lakesJ. Phycol.29246277CrossRefGoogle Scholar
  2. Appleby, P.G. 2001Chronostratigraphic techniques in recent sedimentsLast, W.M.Smol, J.P. eds. Tracking Environmental Change Using Lake SedimentsKluwer AcademicDordtrecht, The Netherlands171203Google Scholar
  3. Appleby, P.G., Nolan, P.J., Gifford, D.W., Godfrey, M.J., Oldfield, F.F., Anderson, N.J., Batterbee, R.W. 1986210Pb dating by low background gamma countingHydrobiologia1412127CrossRefGoogle Scholar
  4. Appleby, P.G., Oldfield, F. 1978The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sedimentCatena518CrossRefGoogle Scholar
  5. Appleby, P.G., Richardson, N., Nolan, P.J. 1991241Am dating of lake sedimentsHydrobiologia2143542CrossRefGoogle Scholar
  6. Appleby, P.G., Richardson, N., Nolan, P.J. 1992Self-absorption corrections for well-type germanium detectorsNucl. Inst. Meth. B71228233CrossRefGoogle Scholar
  7. Boyle, J. 2004A comparison of two methods for estimating the organic matter content of sedimentsJ. Paleolimnol.31125127CrossRefGoogle Scholar
  8. Bradbury, J.P., Coleman, S.M., Reynolds, R.L. 2004The history of recent limnological changes and human impact on Upper Klamath LakeOregonJ. Paleolimnol.31151165CrossRefGoogle Scholar
  9. Bradbury, J.P., Waddington, J.C.B. 1973Stratigraphic record of pollution in Shagawa Lakenortheastern MinnesotaBirks, H.J.B.West, R.G. eds. Quaternary Plant EcologyBlackwellsOxford, UK289307Google Scholar
  10. Brugam, R.B. 1978Human disturbances and the historical development of Linsley PondEcology591936CrossRefGoogle Scholar
  11. Camburn K.E., Kingston J.C. and Charles D.F. (eds.) 1984–1986. PIRLA diatom iconograph. PIRLA Unpubl. Rpt. Ser., Biol. Dept., Indiana Univ., Bloomington, IN, USA.Rpt. 3: 53 photoplates & 1059 Figs.Google Scholar
  12. Charles, D.F. 1990Paleoecological investigation of recent lake acidification in the Adirondack Mountains, N.Y.J. Paleolimnol.319524112 othersGoogle Scholar
  13. Connor J. and O’Loan M. 1993. Beaver Lake Diagnostic/Feasibility Study. New Hampshire Dept. Environmental Services, Concord.Staff Report. 92–15.Google Scholar
  14. Cronan, W. 1983Changes in the Land: Indians, Colonists, and the Ecology of New EnglandHill & WangNew York241Google Scholar
  15. Cumming, B.F., Davey, K.A., Smol, J.P., Birks, H.J.B. 1994When did acid-sensitive lakes (New York, USA) begin to acidify and are they still acidifying?Can. J. Fish. Aquat. Sci.5215501568CrossRefGoogle Scholar
  16. Davis R.B. 1976. The Historic and Present Relationships between Phytoplankton and Land Use in Selected Maine Lakes. United States Office of Water Resources Technology, Project A-026-ME Final Report. Maine Land and Water Resource Center, University of Maine, Orono, ME, 38 pp.Google Scholar
  17. Davis R.B., Anderson D.S., Dixit S.S., Schauffler M. and Appleby P.G. 2001. Sediment and Water Column Responses of Beaver LakeNew Hampshire (U.S.A.) to Catchment and Aerial Inputs in Recent Centuries. Report to New Hampshire Department of Environmental Services, Concord, NH, 30 pp.Google Scholar
  18. Davis, R.B., Anderson, D.S., Norton, S.A., Ford, J., Sweets, P.R., Kahl, J.S. 1994bSedimented diatoms in northern New England lakes and their use as pH and alkalinity indicatorsCan. J. Fish. Aquat. Sci.5118551876Google Scholar
  19. Davis, R.B., Anderson, D.S., Norton, S.A., Whiting, M.C. 1994aAcidity of twelve New England (U.S.A.) lakes in recent centuriesJ. Paleolimnol.12103154CrossRefGoogle Scholar
  20. Davis, R.B., Anderson, D.S., Schauffler, M., Dixit, S.S., Landry, S.C., Connor, J.N. 1998Paleoecological Study of Hatch Pond in Eaton, New HampshireInterim Report to New Hampshire Department of Environmental ServicesConcord, NH38Google Scholar
  21. Davis, R.B., Anderson, D.S., Whiting, M.C., Smol, J.P., Dixit, S.S. 1990Alkalinity and pH of three lakes in northern New England, U.S.A., over the past 300 yearsPhil. Trans. R. Soc. Lond. B327413421Google Scholar
  22. Davis, R.B., Doyle, R.W. 1969A piston corer for upper sediment in lakesLimnol. Oceanogr.14643648Google Scholar
  23. Davis, R.B., Norton, S.A. 1978aPaleolimnological studies of human impact on lakes in the United States, with emphasis on recent research in New EnglandPolskie Archiw. Hydrobiol.2599115Google Scholar
  24. Davis R.B. and Norton S.A. 1978b. Paleolimnology of six New England Lakes. In: New England Council of Water Center Directors (eds.), The Impact of Urbanization on New England Lakes. New England Council of Water Center Directors, Boston, MA, USA, pp. 217–308.Google Scholar
  25. Diers R.W. and Vieira F.J. 1977. Soil Survey of Carroll County, New Hampshire. USSCS & USFS, USDA, 161 pp.Google Scholar
  26. Dixit, S.S., Connor, J.N., Landry, S.C. 2001Palaeolimnological study of Willard and Russell Ponds in New HampshireJ. Lake Reserv. Managem.17197216Google Scholar
  27. Dixit, S.S., Dixit, A.S., Smol, J.P. 1999aLake sediment chrysophyte scales from the northeastern U.S.A. and their relationship to environmental variablesJ. Phycol.35903918CrossRefGoogle Scholar
  28. Dixit, S.S., Dixit, A.S., Smol, J.P., Hughes, R.M., Paulsen, S.G. 2000Water quality changes from human activities in three northeastern USA lakesLake Reserv. Manage.16305321CrossRefGoogle Scholar
  29. Dixit, S.S., Smol, J.P., Charles, D.F., Hughes, R.M., Paulsen, S.G., Collins, G.B. 1999bAssessing water quality changes in the lakes of the northeastern United States using sediment diatomsCan. J. Fish. Aquat. Sci.56131152CrossRefGoogle Scholar
  30. Driscoll, C.T., Likens, G., Hedin, L.O., Eaton, J.S., Bormann, F.H. 1989Changes in the chemistry of surface waters: 25-year results at the Hubbard Brook Experimental Forest, New HampshireEnvir. Sci. Technol.23137143CrossRefGoogle Scholar
  31. Engstrom, D.R., Swain, E.B., Kingston, J.L. 1985A paleolimnological record of human disturbance from Harvey’s LakeVermont: geochemistry, pigments and diatomsFreshw. Biol.15261288CrossRefGoogle Scholar
  32. Estabrook, R.H., Ashley, S.T., Henderson, W.M.,Jr. 2002New Hampshire Lakes and Ponds InventoryNew Hampshire Department of Environmental ServicesConcord, NH277Google Scholar
  33. Fernandez, I.J., Rustad, R.A., Norton, S.A., Kahl, J.S., Cosby, D.J. 2003Experimental acidification causes soil base cation depletion in a New England forested watershedSoil Sci. Soc. Am. J.1719091919CrossRefGoogle Scholar
  34. Furlong, E.T., Cessar, L.R., Hites, R.S. 1987Accumulation of polycyclic aromatic hydrocarbons in acid sensitive lakesGeochim. Cosmochim. Acta5129652975CrossRefGoogle Scholar
  35. Garrison, P.J., Fitzgerald, S.A. 2005The role of shoreland development and commercial cranberry farming in a lake in Wisconsin, USAJ. Paleolimnol.33169188CrossRefGoogle Scholar
  36. Gephart, G.D. 1985Surficial Geologic Map of the Derry Quadrangle, Rockingham County, New HampshireN.H. Dept Resources and Economic Development and U.S. Geological Survey, COGEOMAP ProgramConcord, N.H. mapGoogle Scholar
  37. Henney, N., Henney, K. 1967The Early Days of EatonReporter PressN. Conway, NH107Google Scholar
  38. Henney, N., Henney, K. 1972Eaton RecordsReporter PressN. Conway, NH203Google Scholar
  39. Hoover, E.E. 1937Biological Survey of the Androscoggin, Sacoand Coastal WatershedsNew Hampshire Fish and Game DeptConcord N.H160Google Scholar
  40. Hoover, E.E. 1938Biological Survey of the Merrimack WatershedNew Hampshire Fish and Game DeptConcord N.H238Google Scholar
  41. Hurd, D.H. 1882History of Rockingham and Strafford Counties, New HampshireJ.W. LewisPhiladelphia888Google Scholar
  42. Hurd C.H. & Co.1892Town and City Atlas of the State of New HampshireC.H. Hurd & CoBoston34Google Scholar
  43. Hutchinson, G.E. 1970Ianula: an account of the history and development of the Lago di MonterosiLatiumItalyTrans. Am. Phil. Soc., New Ser.60117812 othersCrossRefGoogle Scholar
  44. Kelsea, R.J., Gove, J.P. 1994Soil Survey of Rockingham County, New HampshireSoil Conservation Service, U.S. Dept. AgricultureWashington, DC47(folded maps)Google Scholar
  45. Kreis, R.G.,Jr. 1989Variability study B interim resultsCharles, D.F.Whitehead, D.R. eds. Paleoecological Investigation of Recent Lake Acidification (PIRLA): 1983–1985Electric Power Research InstitutePalo Alto, CA4-14-48Google Scholar
  46. Leavitt, P.R., Findlay, D.L., Hall, R.J., Smol, J.P. 1999Algal responses to dissolved organic carbon loss and pH decline during whole-lake acidification: evidence from paleolimnologyLimnol. Oceanogr.44757773CrossRefGoogle Scholar
  47. Likens, G.E. 1992The Ecosystem Approach: Its Use and Abuse. Excellence in Ecology Vol. 3 (O. Kinneed.)Ecology InstituteOldendorf/LuheGermany166Google Scholar
  48. Likens, G.E., Driscoll, C.T., Buso, D.C. 1996Long-term effects of acid rain: response and recovery of a forest ecosystemScience272244246Google Scholar
  49. Mackereth, F.J.H. 1966Some chemical observations on post-glacial lake sedimentsPhil. Trans. Roy. Soc. Lond., Ser. B.250165213Google Scholar
  50. Marsicano, L.J., Siver, P.A. 1993A paleolimnological assessment of lake acidification in five Connecticut lakesJ. Paleolimnol.9209221CrossRefGoogle Scholar
  51. Melosi, M.V. 1980Pollution and Reform in American Cities, 1870–1930University of Texas PressAustin212Google Scholar
  52. Merrill, G.D. eds. 1889History of Carroll County, New HampshireW.A. Fergusson & CoBoston987Google Scholar
  53. Miettinen, J.O., Simola, H., Grönlund, E., Lahtinen, J., Niinioja, R. 2005Limnological effects of growth and cessation of agricultural land use in Ladoga Karelia: sedimentary pollen and diatom analysesJ. Paleolimnol.34229243CrossRefGoogle Scholar
  54. Newall, A.E. 1970Biological Survey of the Lakes and Ponds in Cheshire, Hillsborough and Rockingham CountiesNew Hampshire Fish and Game Department, Survey Rpt. 8cConcord, NH219Google Scholar
  55. Newall, A.E. 1972Biological Survey of the Lakes and Ponds in Coos, Grafton and Carroll CountiesNew Hampshire Fish and Game Department, Survey Rpt. 8aConcord, NH297Google Scholar
  56. New Hampshire Water Supply and Pollution Control Division 1990. New Hampshire Lakes and Pond Inventory, Vol. VI. Staff Rpt 90–3, pp. 148–153 (Hatch Pond).Google Scholar
  57. Newton, R.M. 1974Surficial Geology of the Ossipee Lake Quadrangle, New HampshireNew Hampshire Department of Resources and Economic DevelopmentConcord, NH Bull. 352Google Scholar
  58. Nicholls, K.H.,  et al. 1995Chrysophyte blooms in the plankton and neuston of marine and freshwater systemsSandgren, C.D. eds. Chrysophyte Algae: Ecology, Physiology, and DevelopmentCambridge University PressCambridge, U.K181213Google Scholar
  59. Norton, S.A., Bienert, R.W.,Jr., Binford, M.W., Kahl, J.S. 1992Stratigraphy of total metals in PIRLA sediment coresJ. Paleolimnol.7191214CrossRefGoogle Scholar
  60. Norton, S.A., Dillon, P.J., Evans, R.D., Mierle, G., Kahl, J.S.,  et al. 1990The history of atmospheric deposition of CdHg, and Pb in North America: evidence from lake and peat bog sedimentsLindberg, S.E. eds. Acidic Deposition B Sources, Deposition, and Canopy InteractionsSpringer-VerlagNY73102Google Scholar
  61. O’Keefe, J.F., Foster, D.R. 1998Ecological history of Massachusetts forestsFoster, C.H.W. eds. Stepping Back to Look ForwardHarvard UniversityHarvard Forest1966Google Scholar
  62. Paterson, A.M., Cumming, B.F., Smol, J.P., Blais, J.M., France, R.L. 1998Assessment of the effects of logging, forest fires, and drought on lakes in northwestern Ontario: a 30-year paleolimnological perspectiveCan. J. For. Res.2815461556CrossRefGoogle Scholar
  63. Paterson, A.M., Cumming, B.F., Smol, J.P., Hall, R.I. 2004Marked recent increases of colonial scaled chrysophytes in boreal lakes: implications for the management of taste and odour eventsFreshw. Biol.49199207CrossRefGoogle Scholar
  64. Ramstack, J.M., Fritz, S.C., Engstrom, D.R., Heiskary, S.A. 2003The application of a diatom-based transfer function to evaluate regional water-quality trends in Minnesota since 1970J. Paleolimnol.297994CrossRefGoogle Scholar
  65. Rose, N.L. 1990A method for selective removal of inorganic ash particles from lake sedimentsJ. Paleolimnol.46167CrossRefGoogle Scholar
  66. Russell, E.W.B., Davis, R.B., Anderson, R.S., Rhodes, T.E., Anderson, D.S. 1993Recent centuries of vegetational change in the glaciated north-eastern United StatesJ. Ecol.81647664CrossRefGoogle Scholar
  67. Saco Valley Printing1982The Old Maps of Carroll County, New Hampshirein 1892Saco Valley PrintingFryeburg, ME37Google Scholar
  68. Schurr, S.H., Netschert, B.C. 1960Energy in the American Economy, 1850–1975; An Economic Study of its History and ProspectsJohns Hopkins PressBaltimore774Google Scholar
  69. Siver, P.A. 1987The distribution and variation of Synura species (Chrysophyceae) in Connecticut, U.S.ANord. J. Bot.7107116Google Scholar
  70. Siver, P.A. 1993Inferring the specific conductivity of lake water with scaled chrysophytesLimnol. Oceanogr.3814801492CrossRefGoogle Scholar
  71. Siver, P.S., Lott, A.M. 2000Preliminary investigation on the distribution of scaled chrysophytes in Vermont and New Hampshire (U.S.A.) lakes and their utility to infer lake water chemistryNord. J. Bot.20233246Google Scholar
  72. Siver, P.A., Ricard, R., Goodwin, R., Giblin, A.E. 2003Estimating historical in-lake alkalinity generation from sulfate reduction and its relationship to lake chemistry as inferred from algal microfossilsJ. Paleolimn.29179197CrossRefGoogle Scholar
  73. Smol, J.P. 2002Pollution of Lakes and Rivers: A Paleoenvironmental PerspectiveArnold PublishersLondon230Co-published by Oxford University Press, New YorkGoogle Scholar
  74. Smoot, L.D. 1991Coal and char combustionBartok, W.Sarofim, A.F. eds. Fossil Fuel Combustion, A Source BookJ. Wiley & SonsNY653781Google Scholar
  75. Spiramadas, A. 1966The Geology of the Manchester Quadrangle, New HampshireNew Hampshire Department of Resources and Economic DevelopmentConcord, New HampshireBulletin No. 2, 78 pp. + map in pocket.Google Scholar
  76. Stradling, D. 1999Smokestacks and ProgressivesJohns Hopkins PressBaltimore270Google Scholar
  77. Stockner, J.G., Benson, W.W. 1967The succession of diatom assemblages in the recent sediments of Lake WashingtonLimnol. Oceanogr.12513532CrossRefGoogle Scholar
  78. USEPA (United States Environmental Protection Agency). 1994. Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils. Method 3051.Google Scholar
  79. USEPA (United States Environmental Protection Agency). 1995. National Air Pollutant Emission Trends, 1900–1995. USEPA Rpt EP4.24:995, Washington, DC, 74 pp.Google Scholar
  80. USEPA (United States Environmental Protection Agency). 1996. ICP Method 200.7 CLP-M. The U.S. EPA Contract Laboratory ProgramStatement of Work for Inorganics Analysis, Doc. #ILM04.0, EPA/540/R95/121. (ICP SOP, Rev. #2, 8/96).Google Scholar
  81. Vollenweider, R.A. 1979Das Nährstoffbelastungskonzept als Grundlage für den externen Eingriff in den Eutrophierungsprozess stehender Gewasser und TalsperrenZ. Wass. Abwass.-Forsch.124656Google Scholar
  82. Walling, H.F. 1861Topographical Map of Carroll CountySmith & PeaveyPearl St., NYGoogle Scholar
  83. Watson, S.B., Satchwill, T., Dixon, E., McCauley, E. 2001Under-ice blooms and source-water odour in a nutrient-poor reservoir: biological, ecological and applied perspectivesFreshw. Biol.46115CrossRefGoogle Scholar
  84. Wetzel, R.G. 1999LimnologyMorgan Kaufmann PublSan Francisco1006Google Scholar
  85. Whitney, G.G. 1994From Coastal Wilderness to Fruited Plain: A History of Environmental Change in Temperate North America from 1500 to the PresentCambridge University PressCambridge, England451Google Scholar
  86. Willey, G.F. 1895Willey’s Book of NutfieldG.F. Willey PublDerry Depot, New Hampshire367Google Scholar
  87. Wilson, J.R. 1969The Geology of the Ossipee Lake Quadrangle, New HampshireNew Hampshire Dept. Resources & Economic DevelopmentConcord, N.H116Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Ronald B. Davis
    • 1
  • Dennis S. Anderson
    • 1
  • Sushil S. Dixit
    • 2
  • Peter G. Appleby
    • 3
  • Molly Schauffler
    • 1
  1. 1.Department of Biological SciencesUniversity of MaineOronoUSA
  2. 2.Environment CanadaNational Guidelines & Standards OfficeOttawaCanada
  3. 3.Department of Applied MathematicsUniversity of LiverpoolLiverpoolUK

Personalised recommendations