Journal of Paleolimnology

, Volume 35, Issue 3, pp 641–659 | Cite as

A ca. 800-Year Lithologic Record of Drought from Sub-annually Laminated Lake Sediment, East Java

  • Shelley D. Crausbay
  • James M. Russell
  • Douglas W. Schnurrenberger


Lithostratigraphic analyses of a sub-annually laminated core from Ranu Lamongan, a maar lake on the island of Java, document considerable changes in the lake’s chemistry and water balance over the past ca. 800 calendar years. Composition of the dark (clastics) and light (diatoms and/or calcium carbonate minerals) couplets suggests that these laminations form in response to seasonal changes in rainfall and water-column overturn in the lake. Calcium carbonate is not continuous in the core, and when it occurs it varies, sometimes abruptly, in carbonate phase and elemental composition (low Mg-calcite Mg-calcite, and aragonite). A significant correlation between Mg/Ca changes and δ18O variations in authigenic calcium carbonate suggest the basin is highly sensitive to hydrologic variation. Lithologic data suggest calcium carbonate precipitates and thus records hydrologic conditions during the dry season – a season in which rainfall anomalies are highly correlated with the phase of ENSO. Our carbonate-based record of Mg/Ca shows variability in evaporative concentration on a quasi-seasonal frequency for the past ca. 800 years. Our record shows two multi-decadal periods of drought – ca. 1275–1325 and ca. 1450–1650 CE – the latter of which was especially strong and/or prolonged. Our record also shows a possible change in drought frequency at around 1650 CE, in which periods of calcium carbonate precipitation and Mg/Ca change shifted from multi-decadal to interannual variability. Given the strong correlations between modern-day drought in East Java and ENSO variability, our drought record may indicate a regime shift in the behavior of the ENSO system about 350 years ago. Finally, comparisons between our record and others suggest that variation in ENSO on centennial and sub-centennial scales is not strongly associated with changes in the global mean climate state.


Calcium carbonate ENSO Indo-Pacific Laminations Ranu Lamongan Stable isotopes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allan, R.J., D’Arrigo, R.D. 1999‘Persistent’ ENSO sequences: how unusual was the 1990–1995 El Niño?Holocene9101118CrossRefGoogle Scholar
  2. Anderson T.F. and Arthur M.A. 1983. Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems. In: Arthur M.A., Anderson T.F., Veizer J. and Land L.S. (eds), Stable Isotopes in Sedimentary Geology, Short Course Notes, Soc. Econ. Paleontol. Mineral. 10: 1–151.Google Scholar
  3. Anthony, R.S. 1977Iron-rich rhythmically laminated sediments in Lake of the Clouds, northeastern MinnesotaLimnol. Oceangr.224554Google Scholar
  4. Bahrig B. 1988. Palaeoenvironment information from deep-water siderite (Lake of Laach, West Germany). In: Fleet A.J., Kelts K. and Talbot M.R. (eds), Lacustrine Petroleum Source Rocks. Geol. Soc. Lond. Spec. Pub. 40: 153–158.Google Scholar
  5. Bard, E., Raisbeck, G., Yiou, F., Jouzel, J. 2003Reconstructed Solar Irradiance DataIGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series #2003-006NOAA/NGDC Paleoclimatology ProgramBoulder, CO, USAGoogle Scholar
  6. Barsugli, J.J., Sardeshmukh, P.D. 2002Global atmospheric sensitivity to tropical SST anomalies throughout the Indo-Pacific basinJ. Climate1534273442CrossRefGoogle Scholar
  7. Brauer A. and Negendank J. 1993. Paleoenvironmental reconstruction of the late and postglacial sedimentary record of lake Weinfelder maar. In: Negendank J.F.W. and Zolitschka B. (eds), Paleolimnology of European Maar Lakes. Springer-Verlag, pp. 224–235.Google Scholar
  8. Cane, M.A. 2004The evolution of El Niñopast and futureEarth Planet. Sci. Lett.164110Google Scholar
  9. Carn, S.A., Pyle, D.M. 2001Petrology and geochemistry of the Lamongan volcanic field, East Java, Indonesia: primitive Sunda Arc magmas in an extensional tectonic setting?J. Petrol.4216431683CrossRefGoogle Scholar
  10. Charles, C.D., Cobb, K., Moore, M.D., Fairbanks, R.G. 2003Monsoon–tropical ocean interaction in a network of coral records spanning the 20th centuryMar. Geol.201207222CrossRefGoogle Scholar
  11. Clement, A.C., Cane, M.A. 2001A role for the tropical Pacific coupled ocean–atmosphere system on Milankovitch and millennial timescales part I: a modeling study of tropical Pacific VariabilityClark, P.U.Webb, R.S.Keigwin, L.D. eds. Mechanisms of Global Climate Change at Millennial Time ScalesAmerican Geophysical UnionWashington, DC363371Google Scholar
  12. Clement, A.C., Seager, R., Cane, M.A. 1999Orbital controls on the El Niño/Southern Oscillation and the tropical climatePaleoceanography14441456CrossRefGoogle Scholar
  13. Clement, A.C., Seager, R., Cane, M.A. 2000Suppression of El Niño during the mid-Holocene by changes in the earth’s orbitPaleoceanography15731737CrossRefGoogle Scholar
  14. Cobb, K.M., Charles, C.D., Cheng, H., Edwards, R.L. 2003El Niño/Southern Oscillation and tropical Pacific climate during the last millenniumNature424271276Google Scholar
  15. Craig, H. 1961Isotopic variation in meteoric watersScience13317021703Google Scholar
  16. Curtis, C.D., Spears, D.A. 1968The formation of sedimentary iron mineralsEcon. Geol.63257270Google Scholar
  17. D’Arrigo, R.D., Jacoby, G.C., Krusic, P.J. 1994Progress in dendroclimatic studies in IndonesiaTerres., Atmos. Ocean. Sci.5349363Google Scholar
  18. Diaz, H.F., Kiladis, G.N. 1992Atmospheric teleconnections associated with the extreme phases of the Southern OscillationDiaz, H.F.Markgraf, V. eds. El Niño: Historical and Paleoclimatic Aspects of the Southern OscillationCambridge University PressCambridge728Google Scholar
  19. Drummond, C.N., Patterson, W.P., Walker, J.C.G. 1995Climatic forcing of carbon–oxygen isotopic covariance in temperate-region marl lakesGeology2310311034CrossRefGoogle Scholar
  20. Eugster, H.P., Jones, B.F. 1979Behavior of major solutes during closed-basin brine evolutionAm. J. Sci.279609631Google Scholar
  21. Glenn, C.R., Kelts, K.,  et al. 1991Sedimentary rhythms in lake depositsEinsele,  eds. StratigraphySpringer-VerlagNew York188221Google Scholar
  22. Green, J., Corbet, S.A., Watts, E., Lan, O.B. 1976Ecological studies on Indonesian lakes. Overturn and restratification of Ranu LamonganJ. Zool.180315354Google Scholar
  23. Goldsmith, J.R., Graf, D.L., Heard, H.C. 1961Lattice constants of the calcium–magnesium carbonateAm. Mineral.46453457Google Scholar
  24. Grossman, E.L., Ku, T.L. 1986Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effectsChem. Geol.595974CrossRefGoogle Scholar
  25. Hendon, H.H. 2003Indonesian rainfall variability: impacts of ENSO and local air–sea interactionJ. Climate1617751790CrossRefGoogle Scholar
  26. Hughen, K.A., Schrag, D.P., Jacobsen, S.B., Hantoro, W. 1999El Niño during the last interglacial period recorded by a fossil coral from IndonesiaGeophys. Res. Lett.2631293132CrossRefGoogle Scholar
  27. Jin, F.F. 1997An equatorial ocean recharge paradigm for ENSO. 1. Conceptual modelJ. Atmos. Sci.54811829Google Scholar
  28. Kelts, K., Hsü, K.J. 1978Freshwater carbonate sedimentationLerman, A. eds. Lakes Chemistry Geology PhysicsSpringer-VerlagNew York296323Google Scholar
  29. Kelts, K., Talbot, M. 1990Lacustrine carbonate as geochemical archives of environmental change and biotic/abiotic interactionsTilzer, M.M.Serruya, C. eds. Large Lakes: Ecological Structure and FunctionSpringer-VerlagNew York288315Google Scholar
  30. Kripalani, R.H., Kulkarni, A. 1997Rainfall variability over south-east Asia – connections with Indian monsoon and ENSO extremes: new perspectivesInt. J. Climatol.1711551168Google Scholar
  31. Kumar, H., Rajagopalan, B., Cane, M.A. 1999On the weakening relationship between the Indian Monsoon and ENSOScience28421562159CrossRefGoogle Scholar
  32. Lea, D.W., Pak, D.K., Spero, H.J. 2000Climate impact of late quaternary equatorial Pacific sea surface temperature variationsScience28917191724CrossRefGoogle Scholar
  33. Li, H.C., Ku, T.L. 1997δ13C–δ18O covariance as a paleohydrological indicator for closed-basin lakesPalaeogeog., Palaeoclim., Palaeoecol.1336980CrossRefGoogle Scholar
  34. Mann, M.E., Gille, E.P., Bradley, R.S., Hughes, M.K., Overpeck, J.T., Keimig, F.T., Gross, W.S. 2000Global Temperature Patterns in Past Centuries: An Interactive Presentation, IGBP Pages/World Data Center for Paleoclimatology Data Contribution Series #2000-075NOAA/NGDC Paleoclimatology ProgramBoulder, CO, USAGoogle Scholar
  35. Mann, M.E., Cane, M.A., Zebiak, S.E., Clement, A.C. 2005Volcanic and solar forcing of the Tropical Pacific over the past 1000 yearsJ. Climate18447456Google Scholar
  36. McGregor, G.R., Nieuwolt, S. 1998Tropical Climatology: An Introduction to the Climates of the Low Latitudes2John Wiley & SonsNew York352Google Scholar
  37. Moy, C.M., Seltzer, G.O., Rodbell, D.T., Anderson, D.M. 2002Variability of El Niño/Southern Oscillation at millennial timescales during the Holocene epochNature420162165CrossRefGoogle Scholar
  38. Müller, G., Irion, G., Förstner, U. 1972Formation and diagenesis of inorganic Ca–Mg carbonate in the lacustrine environmentNaturwissneschaften59158164Google Scholar
  39. Quinn, W.H., Zopf, D.O., Short, K.S., Yang, R.T.W.K. 1978Historical trends and statistics of the Southern Oscillation, El Niñoand Indonesian droughtsFish Bull.76663678Google Scholar
  40. Romanek, C.S., Grossman, E.L., Morse, J.W. 1992Carbon isotopic fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rateGeochim. Cosmochim. Acta56419430CrossRefGoogle Scholar
  41. Rothwell, R.G. 1989Minerals and Mineraloids in Marine Sediments: An Optical Identification GuideElsevier Appl. Sci. Publ.Basking, UK279Google Scholar
  42. Russell, J.M., Johnson, T.C., Talbot, M.R. 2003A 725 yr cycle in the climate of central Africa during the late HoloceneGeology31677680CrossRefGoogle Scholar
  43. Ruttner, F. 1931Hydrographische und hydrochemische Beobachtungen auf Java, Sumatra, und BaliArch. Hydrobiol. Suppl.8197454Google Scholar
  44. Saji, N.H., Goswami, B.N., Vinayachandran, P.N., Yamagata, T. 1999A dipole mode in the tropical Indian OceanNature401360363CrossRefGoogle Scholar
  45. Schnurrenberger, D., Russell, J., Kelts, K. 2003Classification of lacustrine sediments based on sedimentary componentsJ. Paleolim.29141154CrossRefGoogle Scholar
  46. Spencer, R.J., Baedecker, M.J., Eugster, H.P., Forester, R.M., Goldhaber, M.B., Jones, B.F., Kelts, K., McKenzie, J., Madsen, D.B., Rettig, S.L., Rubin, M.B. 1984Great Salt Lakeand precursors, Utah: the last 30,000 yearsContrib. Mineral. Petrol.86321334CrossRefGoogle Scholar
  47. Stahle, D.W., D’Arrigo, R.D., Krusic, P.J., Cleaveland, M.K., Cook, E.R., Allan, R.J., Cole, J.E., Dunbar, R.B., Therrell, M.D., Gay, D.A., Moore, M.D., Stokes, M.A., Burns, B.T., Villanueva-Diaz, J., Thompson, L.G. 1998Experimental dendroclimatic reconstruction of the Southern OscillationBull. Am. Meteorol. Soc.7921372152CrossRefGoogle Scholar
  48. Stuiver, M., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., Plicht, J., Spurk, M., Reimer, P.J., Bard, E., Beck, J.W. 1998INTCAL98 radiocarbon age calibration, 24,000–0 cal BPRadiocarbon4010411083Google Scholar
  49. Stuiver M., Reimer P.J. and Reimer R.W. 2000. CALIB 4.3 (WWW program and documentation).
  50. Talbot, M.R. 1990A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonateChem. Geol. (Isotope Geosci. Sec.)80261279Google Scholar
  51. Talbot M.R. and Kelts K.R. 1990. Paleolimnological signatures from carbon and oxygen isotopic ratios in carbonate from organic-rich lacustrine sediments. In: Katz B. (ed), Lacustrine Basin Exploration: Case Studies and Modern Analogs. American Association of Petroleum Geologists, Memoir 50, pp. 99–112.Google Scholar
  52. Talbot, M.R., Kelts, K. 1986Primary and diagenetic carbonate in the anoxic sediments of Lake Bosumtwi, GhanaGeology14912916CrossRefGoogle Scholar
  53. Tarutani, T., Clayton, R.N., Mayeda, T.K. 1969The effect of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and waterGeochim. Cosmochim. Acta33987996CrossRefGoogle Scholar
  54. Townsend, S.A. 1998The influence of retention time and wind exposure on stratification and mixing in two tropical Australian reservoirsArch. Hydrobiol.141353371Google Scholar
  55. Tudhope, A.W., Chilcott, C.P., McCulloch, M.T., Cook, E.R., Chappell, J., Ellam, R.M., Lea, D.W., Lough, J.M., Shimmield, G.B. 2001Variability in the El Niño-Southern Oscillation through a glacial–interglacial cycleScience29115111517CrossRefGoogle Scholar
  56. Bemmelen, R. 1949The Geology of Indonesia, Vol. 1B: PortfolioGovernment Printing Officethe Hague732Google Scholar
  57. Wright, H.E. 1967A square-rod piston sampler for lake sedimentsJ. Sediment Petrol.37975976Google Scholar
  58. Whitten, T., Soeriaatmadja, R.E., Afif, S.A. 1997The Ecology of Java and BaliOxford University PressOxford969Google Scholar
  59. Yin, J.H., Battisti, D.S. 2000The importance of tropical sea surface temperature patterns in simulations of the Last Glacial Maximum climateJ. Climate14565581Google Scholar
  60. Zhang, J., Quay, P.D., Wilbur, D.O. 1995Carbon isotope fractionation during gas–water exchange and dissolution of CO2Geochem. Cosmochim. Acta59107114Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Shelley D. Crausbay
    • 1
    • 4
  • James M. Russell
    • 2
    • 4
  • Douglas W. Schnurrenberger
    • 3
    • 4
  1. 1.Department of BotanyUniversity of WisconsinMadisonUSA
  2. 2.Department of Geological SciencesBrown UniversityProvidenceUSA
  3. 3.DOSECCSalt Lake CityUSA
  4. 4.Limnological Research CenterUniversity of MinnesotaMinneapolisUSA

Personalised recommendations