Advertisement

Journal of Paleolimnology

, Volume 33, Issue 4, pp 445–461 | Cite as

A paleolimnological record of Holocene climate and environmental change in the Temagami region, northeastern Ontario

  • Robert E. A. Boudreau
  • Jennifer M. Galloway
  • R. Timothy Patterson
  • Arun Kumar
  • Frederick A. Michel
Article

Abstract

The Arcellacean (Thecamoebian) fauna was assessed in five Holocene sediment cores obtained from James and Granite lakes in the Temagami region of northeastern Ontario. In addition, palynological analysis was carried out on two of these cores, one each from James and Granite lakes. The first indication of postglacial colonization by plants was the appearance of rare Cupressaceae pollen, dated to 10,800 yr BP. Plant diversity began to increase by 10,770 yr BP when Pinus spp. and Larix migrated into the area. The first appearance of arcellaceans occurred after 9650 yr BP in assemblages dominated by Centropyxis constricta and opportunistic Centropyxis aculeata. High abundances of charophytes in the cores until 8800 yr BP indicated that macroalgae were proliferating at this time. This deposition is interpreted to have occurred during the draining of an ice-marginal lake following the retreat of the Laurentide Ice Sheet. Based on pollen analysis, warmer conditions associated with the Holocene Hypsithermal prevailed in the area from 6250 to 4115 yr BP. The stable, open Great Lakes – St. Lawrence type forest that developed here at the beginning of the Hypsithermal continues to prevail to the present. The periodic colonization of the lake by beavers (Castor canadensis) acted as a control on water-level and eutrophication through the Holocene. Evidence of eutrophication was indicated in the core samples by the abundance of high levels of the alga Pediastrum and the arcellacean Cucurbitella tricuspis. Eutrophication periodically developed when beavers dammed a site, causing the rate of flow in drainage streams to slow and stagnant conditions occurred. When the site became depleted of the nearby trees, which were preferred by beaver (Betula, Alnus and Populus), the dam would be abandoned, causing the water-level to drop. Stagnant conditions were reduced as flow levels increased, reducing eutrophication and resulting in recovering forest stands. In addition, the lowering water levels would result in encroachment of the forest along the lake shore. This cycle occurred many times in the history of this lake as indicated by fluctuations in the size of arcellacean populations.

Keywords

Arcellacea Beaver Eutrophication Holocene Paleolimnology Palynology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asioli, A., Medioli, F.S., Patterson, R.T. 1996Thecamoebians as a tool for reconstruction of paleoenvironments in some Italian lakes in the foothills of the southern Alps (OrtaVarese and Candia)J. Foramin. Res.26248263Google Scholar
  2. Bjorck, S. 1985Deglaciation chronology and revegetation in northwester OntarioCan. J. Earth Sci.22850871Google Scholar
  3. Boudreau, R.E.A. 2004Paleoenvironmental Reconstruction of James and Granite Lakes in the Temagami Region of northeastern Ontario: from the retreat of the Laurentide Ice Sheet to the presentCarleton UniversityOttawaOntarioPh.D.Google Scholar
  4. Broschart M.R., Johnston C.a. and Naiman R.J. 1989. Predicting beaver colony density in boreal landscapes. J. Wildlife Manage. 929–934.Google Scholar
  5. Burden, E.T., McAndrews, J.H., Norris, G. 1986Palynology of Indian and European forset clearance and farming in lake sediment cores from Awenda Provincial Park, OntarioCan. J. Earth Sci.234354Google Scholar
  6. Carpenter, W.B. 1861On the systematic arrangement of the RhizopodaNat. Hist. Rev.1456472Google Scholar
  7. Carter, H.J. 1856Notes on the freshwater Infusoria of the island of Bombay. No. 1. OrganizationAnn. Mag. Nat. Hist. Ser.2221249Google Scholar
  8. Carter, H.J. 1864On freshwater Rhizopoda of England and IndiaAnn. Mag. Nat. Hist.131839Google Scholar
  9. Chambers, P.A., DeWreede, R.E., Irlandi, E.A., Vandermeulen, H. 1999Management issues in aquatic macrophyte ecology: a Canadian perspectiveCan. J. Bot.77471487CrossRefGoogle Scholar
  10. Collins E.S., McCarthy F.M.G., Medioli F.S., Scott D.B. and Honig C.A. 1990. Biogeographic distribution of modern thecamoebians in a transect along the eastern North American coast. In: Hemleben C., Kaminski M.A., Kuhnt W. and Scott D.B. eds., Paleoecology, Biostratigraphy, Paleoceanography and Taxonomy of Agglutinated ForaminiferaNATO ASI series; Vol. C: Mathematical and Physical Sciences, pp. 783–792.Google Scholar
  11. Dalby, A., Kumar, A., Moore, J.M., Patterson, R.T. 2000Preliminary survey of arcellaceans (thecamoebians) as limnological indicators in tropical Lake SentaniIrian JayaIndonesiaJ. Foramin. Res.30135142CrossRefGoogle Scholar
  12. Dallimore, A., Schröder-Adams, C.J., Dallimore, S.R. 2000Holocene environmental history of thermokarst lakes on Richards IslandNorthwest Territories, Canada: thecamoebians as paleolimnological indicatorsJ. Paleolimnol.23261283CrossRefGoogle Scholar
  13. De Nie, H. 1987The decrease in aquatic vegetation in Europe and its consequences for fish population. Occasional Paper No. 19European Inland Fisheries Advisory Commission, Food and Agricultural Organization of the United NationsRomeGoogle Scholar
  14. De Vernal, A., Henry, M., Bilodeau, G. 1999Techniques de préparation et d’analyse en micropaléontologieLes Cahiers du GEOTOPUniversité du Québec à Montréal 3Google Scholar
  15. Deevey, E.S.J. 1964Sampling Lake Sediments by Use of the Livingstone SamplerKummel, B.Raup, D. eds. Handbook of Paleontological TechniquesW. H. Freeman and CompanySan Francisco and London852Google Scholar
  16. Deflandre G. 1953. Ordres des Testaceolobosa (De Saedeleer, 1834), Testaceofilosa (De Saedeleer, 1834), Thalamia (Haeckel, 1862) ou the camoebiens (Auct.) (Rhizopoda Testacea). In: Grass P.-P. (ed.), Trait. de Zoologie, Masson, Paris, 1: pp. 97–148.Google Scholar
  17. Ehrenberg C.G. 1830. Organisation, systematik und geographisches Verhaltnis der Infusionsthierchen; Berlin: Druckerei der Konigliche Akademie der Wissenschaften, 108 pp.Google Scholar
  18. Ehrenberg, C.G. 1832Über die Entwicklung und Lebensdauer der Infusionsthierenebst ferneren Beiträgen zu einer Vergleichung ihrer organischen SystemeKönigliche Akademie der Wissenschaften zu Berlin Physikalische Abhandlungen18311154Google Scholar
  19. Ehrenberg C.G. 1840. das grössere Infusorienwerke. Königliche Preussischen Akademie der Wissenschaften zu Berlin Bericht: 198–219.Google Scholar
  20. Ehrenberg, C.G. 1843Verbreitung und Einfluss des mikroskopischen Lebens in Süd-und Nord AmerikaKönigliche Akademie der Wissenschaften zu Berlin Physikalische Abhandlungen1841291446Google Scholar
  21. Ehrenberg, C.G. 1848Fortgesetzte Beobachtungen über jetzt herrschende atmosphärische mikroskopische VerhältnisseBericht über die zur Bekanntmachung geeigneten Verhandlungen der Königlichen Preussischen Akademie der Wissenschaften zu Berlin13370381Google Scholar
  22. Fishbein, E., Patterson, R.T. 1993Error-weighed maximum likelihood (EWML): a new statistically based method to cluster quantitative micropaleontological dataJ. Paleontol.67475485Google Scholar
  23. Francis, M.M. Naiman R.J., Melillo, J.M. 1985Nitrogen fixation in subarctic streams influenced by beaver (Castor canadensis)Hydrobiologia121193202CrossRefGoogle Scholar
  24. Gribbin J. and Lamb H.H. 1978. In: Gribbin J. eds., Climatic Change. Cambridge University Press, Cambridgepp. 68–82.Google Scholar
  25. Hall, R.I., Duff, K.E., Quinby, P.A. 1994A 10,000-year vegetation history of the Temagami Region of Ontario with special emphasis on white pineWilderness SocietyTemagami110Web Resource; http://www.ancientforest.org/rr4.html TemagamiGoogle Scholar
  26. Hempel, A. 1898A list of the Protozoa and rotifera found in the Illinois River and adjacent lakes at HavanaIllinoisIllinois State Lab. Nat. Hist. Bull.5301388Google Scholar
  27. Hodgins, B.W., Benedickson, J. 1989The Temagami Experience: Recreation, Resourceand Aboriginal Rights in the Northern Ontario WildernessUniversity of Toronto PressTorontoCanada370Google Scholar
  28. Johnston C.A. and Naiman R.J. 1990a. Aquatic patch creation in relation to beaver population trends. Ecology 71: 1617–1621.Google Scholar
  29. Johnston C.A. and Naiman R.J. 1990b. Browse selection by beaver: effects on riparian forest composition. Can. J. Forest Res. 20: 1036–1043.Google Scholar
  30. Kearney, M.S., Luckman, B.H. 1983Postglacial vegetational history of Tonquin Pass, British ColumbiaCan. J. Earth Sci.20776786Google Scholar
  31. Kent, W.S. 1880A Manual of the InfusoriaLondon: Bogue.11472Google Scholar
  32. Kumar A. and Dalby A.P. 1998. Identification Key for Holocene Lacustrine Arcellacean (Thecamoebian) Taxa. Pages 34 in Palaeontologica Electronica.Google Scholar
  33. Lamarck, J.B. 1816Histoire naturelle des animaux sans vertèbresVerdièreParis21568Google Scholar
  34. Leidy, J. 1874Notice of some RhizopodsAcad. Nat. Sci. Philadelphia Proc.3155157Google Scholar
  35. Leidy J. 1879. Fresh water rhizopods of North America. United States Geological Survey of the Territories, Report 12: 1–324.Google Scholar
  36. Liu, K.-B. 1990Holocene Paleoecology of the Boreal Forest and Great Lakes-St. Lawrence Forest in Northern Ontario.Ecol. Monogr.60179212Google Scholar
  37. McCarthy, F.M.G., Collins, E.S., McAndrews, J.H., Kerr, H.A., Scott, D.B., Medioli, F.S. 1995A comparison of postglacial arcellacean („thecamoebian”) and pollen succession in Atlantic Canadaillustrating the paleoclimatic reconstructionJ. Paleontol.69980993Google Scholar
  38. Medioli, F.S., Brooks, G.R. 2003Diatom and thecamoebian signatures of Red River (Manitoba and North Dakota) floods: data collected from the 1997 and 1999 spring freshetsJ. Paleolimnol.29353386CrossRefGoogle Scholar
  39. Medioli F.S. and Scott D.B. 1983. Holocene Arcellacea (Thecamoebians) from Eastern Canada. Cushman Foundation for Foraminiferal Research, Special Publication 21: 1–63.Google Scholar
  40. Medioli F.S., Scott D.B., Collins E.S. and McCarthy F.M.G. 1990. Fossil thecamoebians: present status and prospects for the future. In: Hemleben C., Kaminski M.A., Kuhnt W. and Scott D.B. (eds), Paleoecology, Biostratigraphy, Paleoceanography and Taxonomy of Agglutinated Foraminifera, NATO ASI series; Vol. C, Mathematical and Physical Sciences 327: 813–839.Google Scholar
  41. Minckley, T., Whitlock, C. 2000Spatial variation of modern pollen in Oregon and southern Washington, USARev. Paleobot Palynol.11297123CrossRefGoogle Scholar
  42. Paterson, A.M., Cumming, B.F., Smol, J.P., Hall, R.I. 2004Marked recent increases of colonial scaled chrysophytes in boreal lakes: implications for the management of taste and odour eventsFreshwater Biol.49199207CrossRefGoogle Scholar
  43. Patterson, R.T. 2000bUse of Arcellacea (Thecamoebians) to Gauge Levels of Contamination and Remediation in Industrially Polluted LakesMartin, R.E. eds. Environmental MicropaleontologyKluwer Academic/Plenum PublishersNew York257278Google Scholar
  44. Patterson, R.T. 2002A review of current testate rhizopod (thecamoebian) research in CanadaPalaeogeogr. Palaeocl.180225251CrossRefGoogle Scholar
  45. Patterson, R.T., Barker, T., Burbidge, S.M. 1996Arcellaceans (Thecamoebians) as proxies of Arsenic and Mercury contamination in Northeastern Ontario lakesJ. Foramin. Res.26172183Google Scholar
  46. Patterson, R.T., Dalby, A., Kumar, A., Henderson, L.A., Boudreau, R.E.A. 2002Arcellaceans (thecamoebians) as indicators of land-use change: settlement history of the Swan Lake areaOntario as a case studyJ. Paleolimnol.28297316CrossRefGoogle Scholar
  47. Patterson, R.T., Fishbein, E. 1989Re-examination of the statistical methods used to determine the number of point counts needed for micropaleontological quantitative researchJ. Paleontol.63245248Google Scholar
  48. Patterson, R.T., Kumar, A. 2000aAssessment of Arcellacean (Thecamoebian) Assemblages, species, and strains as contaminant indicators in James LakeNortheastern OntarioCanadaJ. Foramin. Res.30310320CrossRefGoogle Scholar
  49. Penard, E. 1890Études sur les Rhizopodes d’eau douceMémoires de la Société de Physique et d’Histoire Naturelle de Genéve311230Google Scholar
  50. Penard, E. 1902Faune rhizopodique du Bassin du LémanHenry KundigGenève714Google Scholar
  51. Perty, M. 1849Mikroskopische Organismen der Alpen und der Italeinischen SchweizMittheilungen der Naturforschenden Gesellschaft in Bern164153176Google Scholar
  52. Prescott, G.W. 1970The Freshwater Algae2nd ednWm. C. Brown Company PublishersDubuqueIowa348Google Scholar
  53. Ray, A.M., Rebertus, A.J., Ray, H.L. 2001Macrophyte succession in Minnesota beaver pondsCan. J. Bot.79487499CrossRefGoogle Scholar
  54. Reinhardt, E.G., Dalby, A., Kumar, A., Patterson, R.T. 1998aUtility of Arcellacean morphotypic variants as pollution indicators in mine tailing contamincated lakes near CobaltOntarioCanadaMicropaleontology444131148Google Scholar
  55. Reinhardt, E.G., Dalby, A.P., Kumar, A., Patterson, R.T. 1998bArcellaceans as pollution indicators in mine tailing contaminated lakes near CobaltOntarioCanadaMicropaleontology44131148Google Scholar
  56. Rhumbler, L. 1895Entwurf eines natürlichen Systems der Thalomophoren: Nachrichten der Gesellschaft für Wissenschaft Göttingenmathematischephysikalisch Klasse15198Google Scholar
  57. Saarnisto, M. 1974The deglaciation history of the Lake Superior region and its climatic implicationsQuater. Res.4316339CrossRefGoogle Scholar
  58. Schlumberger, P. 1845Observations sur quelques nouvelles especes d’Infusoires de la famille des RhizopodesAnnales des Sciences Naturelles. B. Zoologie3254256Google Scholar
  59. Schmarda, L.K. 1871ZoologieBraumullerWien372Google Scholar
  60. Schultze, F.E. 1877Rhizopodenstudien VIArchiv fuer Mikroscopisvhe Anatomie13930Google Scholar
  61. Scott, D.B. 2001Monitoring of Coastal Environments Using Foraminifera and Thecamoebian IndicatorsCambridge University PressCambridgeUSA192Google Scholar
  62. Scott, D.B., Hermelin, J.O.R. 1993A device for precision splitting of micropaleontological samples in liquid suspensionJ. Paleontol.67151154Google Scholar
  63. Scott, D.B., Medioli, F.S. 1980Quantitative studies of marsh foraminiferal distributions in Nova Scotia: their implications for the study of sea level changesCushman Foundation for Foraminiferal ResearchSpecial Publication1758Google Scholar
  64. Snodgrass J.W. 1997. Temporal and spatial dynamics of beaver-created patches as influenced by management practices in a south-eastern North American landscape. J. Appl. Ecol. 1043–1056.Google Scholar
  65. Stein, S.F.N. 1859Über die ihm aus eigener Untersuchung bekannt gewordenen Susswässer-RhizopodenAbhandlungen der Koeniglichen Boehmischen Gesellschaften der Wissenschaften54143Google Scholar
  66. Terasmae, J., Anderson, T.W. 1970Hypsithermal range extension of white pine (Pinus strobus L.) in Quebec, CanadaCan. J. Earth Sci.7406413Google Scholar
  67. von Siebold C.T.E. 1845. Wirbellose Thiere. In: von Siebold C.T.E. and von Stannius H. (eds), Lehrbuch der Vergleishenden Anatomie, pp. 1–679.Google Scholar
  68. Wallich, G.C. 1864On the extentand some of the principal causes, of structural variation among the difflugian rhizopodsAnn. Mag. Nat. Hist. Ser.3215245Google Scholar
  69. Watt, R.F., Heinselman, M.L. 1965Foliar nitrogen and phosphorus level related to site quality in a northern Minnesota spruce bogEcology46357361Google Scholar
  70. Wood, R.D., Imahori, K. 1965Monograph of the CharaceaeVerlag; CramerWeldon and Wesley, LTD; Stechert-Hafner Service Agency, Inc.New York, NYGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Robert E. A. Boudreau
    • 1
  • Jennifer M. Galloway
    • 1
  • R. Timothy Patterson
    • 1
  • Arun Kumar
    • 1
  • Frederick A. Michel
    • 1
  1. 1. Ottawa Carleton Geoscience Centre and Department of Earth Sciences, College of Natural SciencesCarleton UniversityOttawaCanada

Personalised recommendations