Journal of Paleolimnology

, Volume 33, Issue 3, pp 303–311 | Cite as

Climato-hydrological environment inferred from Lake Baikal sediments based on an automatic orbitally tuned age model

  • Shinya Ochiai
  • Kenji Kashiwaya


We propose a new automatic orbital tuning algorithm to adjust climatic signals to insolation. This can tune two signals with periodicity only without shape similarity. A Genetic Algorithm (GA) is used as an optimizing method. The new age model for the Brunhes epoch in Lake Baikal core BDP98 defined climatic shifts at about 250 kyr B.P., 350 kyr B.P. and 700 kyr B.P. The sedimentation rate for the interval from 350 kyr B.P. to 700 kyr B.P. was comparatively low and stable. This new model also indicates that there was a stadial during the super interglacial period (MIS 11), and that the terrestrial response to climate change was complex in this period.


Genetic Algorithm Lake Baikal Orbital tuning Sediment physical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Colman, S.M., Peck, J.A., Karabanov, E.B., Carter, S.J., Bradbury, J.P., King, J.W., Williams, D.F. 1995Continental climate response to orbital forcing from biogenic silica records in Lake BaikalNature378769771Google Scholar
  2. Eshelman, L.J., Schaffer, J.D. 1993Real-coded Genetic Algorithms and interval-schemataFound. Genet. Algor.2187202Google Scholar
  3. Fonseca C.M. and Fleming P.J. 1993. Genetic Algorithms for multiobjective optimization: formulation, discussion and generalization. Proceedings of the 5th International Conference on Genetic Algorithms, pp. 416-423.Google Scholar
  4. Goldberg D.E. and Richardson J. 1987. Genetic Algorithms with sharing for multimodal function optimization. Proceedings of the Second International Conference on Genetic Algorithms, pp. 41-49.Google Scholar
  5. Hays, J.D., Imbrie, J., Shackleton, N.J. 1976Variations in the Earth’s orbit: pacemaker of the ice agesScience19411211132Google Scholar
  6. Holland, J.H. 1975Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control and artificial intelligenceUniversity of Michigan PressAnn Arbor183Google Scholar
  7. Imbrie, J., Berger, A., Boyle, E.A., Clemens, S.C., Duffy, A., Howard, W.R., Kukla, G., Kutzbach, J., Martinson, D.G., McIntyre, A., Mix, A.C., Molfino, B., Morley, J.J., Peterson, L.C., Pisias, N.G., Prell, W.L., Raymo, M.E., Shackleton, N.J., Toggweiler, J.R. 1993On the structure and origin of major glaciation cycles. II. The 100,000-year cyclePaleoceanography8699735Google Scholar
  8. Imbrie, J., Boyle, E.A., Clemens, S.C., Duffy, A., Howard, W.R., Kukla, G., Kutzbach, J., Martinson, D.G., McIntyre, A., Mix, A.C., Molfino, B., Morley, J.J., Peterson, L.C., Pisias, N.G., Prell, W.L., Raymo, M.E., Shackleton, N.J., Toggweiler, J.R. 1992On the structure and origin of major glaciation cycles. I. Linear responses to Milankovitch forcingPaleoceanography7701738Google Scholar
  9. Imbrie, J., Hays, J.D., Martinson, D.G., McIntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L., Shackleton, N.J. 1984The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O recordBerger, A.Imbrie, J.Hays, J.Kukla, G.Saltzman, B. eds. Milankovitch and ClimateD. Reidel Publishing CompanyDordrecht269305Google Scholar
  10. Kashiwaya, K. 1994A quantitative expression for external forcesKirkby, M.J. eds. Process Models and Theoretical GeomorphologyJohn Wiley & SonsChichester8595Google Scholar
  11. Kashiwaya, K., Ochiai, S., Sakai, H., Kawai, T. 2001aOrbit-related long-term climate cycles revealed in a 12-Myr continental record from Lake BaikalNature4107174Google Scholar
  12. Kashiwaya, K., Ryugo, M., Sakai, H., Kawai, T. 1998Long-term climato-limnological oscillation during the past 2.5 million years printed in Lake Baikal sedimentsGeophys. Res. Lett.25659662Google Scholar
  13. Kashiwaya, K., Sakai, H., Ryugo, M., Horii, M., Kawai, T. 2001bLong-term climato-limnological cycles found in a 3.5-million-year continental recoredJ. Paleolimnol.25271278Google Scholar
  14. Laskar, J., Joutel, F., Boudin, F. 1993Orbital, precessional, and insolation quantities for the Earth from -20 Myr to +10 MyrAstron. Astrophys.270522533Google Scholar
  15. Maasch, K.A. 1988Statistical detection of the mid-Pleistocene transitionClimate Dynam.2133143Google Scholar
  16. Martinson, D.G., Menke, W., Stoffa, P. 1982An inverse approach to signal correlationJ. Geophys. Res.8748074818Google Scholar
  17. Mats, V.D., Fujii, S., Mashiko, K., Osipov, E. Yu., Yefrimova, I.M., Klimansky, A.V. 2000Changes in Lake Baikal water levels and runoff direction in the Quaternary periodMinoura, K. eds. Lake BaikalElsevier Science B.VAmsterdam1534Google Scholar
  18. Ochiai, S., Kashiwaya, K. 2003A conceptual model of sedimentation processes for a hydrogeomorphological study in Lake BaikalKashiwaya, K. eds. Long Continental Records from Lake BaikalSpringer-Verlag TokyoTokyo297312Google Scholar
  19. Prokopenko, A.A., Karabanov, E.B., Williams, D.F., Kuzmin, M.I., Shackleton, N.J., Crowhurst, S.J., Peck, J.A., Gvozdkov, A.N., King, J.W. 2001Biogenic silica record of the Lake Baikal response to climatic forcing during the BrunhesQuat. Res.55123132Google Scholar
  20. Prokopenko, A.A., Williams, D.F., Kuzmin, M.I., Karabanov, E.B., Khursevich, G.K., Peck, J.A. 2002Muted climate variations in continental Siberia during the mid-Pleistocene epochNature4186568Google Scholar
  21. Ruddiman, W.F. 2003Orbital insolation, ice volumeand greenhouse gasesQuat. Sci. Rev.2215971629Google Scholar
  22. Sapota T., Aldahan A., Possnert G., Peck J., King J., Prokopenko A. and Kuzmin M. 2004. A late Cenozoic Earth’s crust and climate dynamics record from Lake Baikal. J. Paleolimnol. (in press). 32: 341-349.Google Scholar
  23. Shackleton, N.J., Berger, A., Peltier, W.R. 1990An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677Trans. Royal Soc. Edinburgh: Earth Sci.81251261Google Scholar
  24. Williams, D.F., Peck, J., Karabanov, E.B., Prokopenko, A.A., Kravchinsky, V., King, J., Kuzmin, M.I. 1997Lake Baikal recored of continental climate response to orbital insolation during the past 5 million yearsScience27811141117Google Scholar
  25. Yu, Z.W., Ding, Z.L. 1998An automatic orbital tuning method for paleoclimate recordsGeophys. Res. Lett.2545254528Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Earth SciencesKanazawa UniversityKanazawaJapan
  2. 2.Institute of Nature and Environmental TechnologyKanazawa UniversityKanazawaJapan

Personalised recommendations