Advertisement

The Protein Journal

, Volume 38, Issue 3, pp 289–305 | Cite as

The Ways of Tails: the GET Pathway and more

  • Nica BorgeseEmail author
  • Javier Coy-Vergara
  • Sara Francesca Colombo
  • Blanche SchwappachEmail author
Article

Abstract

Due to their topology tail-anchored (TA) proteins must target to the membrane independently of the co-translational route defined by the signal sequence recognition particle (SRP), its receptor and the translocon Sec61. More than a decade of work has extensively characterized a highly conserved pathway, the yeast GET or mammalian TRC40 pathway, which is capable of countering the biogenetic challenge posed by the C-terminal TA anchor. In this review we briefly summarize current models of this targeting route and focus on emerging aspects such as the intricate interplay with the proteostatic network of cells and with other targeting pathways. Importantly, we consider the lessons provided by the in vivo analysis of the pathway in different model organisms and by the consideration of its full client spectrum in more recent studies. This analysis of the state of the field highlights directions in which the current models may be experimentally probed and conceptually extended.

Keywords

Tail-anchored protein Membrane targeting Endoplasmic reticulum Mitochondrial outer membrane Peroxisomes TRC40 

Notes

Acknowledgements

This study was partially supported by a grant of the People Programme (Marie Curie Actions) of the European Union’s Seventh framework Programme FP7/2007-2013/under REA grant agreement n° [607072] to N. Borgese and B. Schwappach. J. Coy-Vergara and B. Schwappach were supported by the Deutsche Forschungsgemeinschaft SFB1002, TP A07 and SFB1190 (P04). We thank A. Farkas for discussion.

Supplementary material

10930_2019_9845_MOESM1_ESM.xlsx (47 kb)
Supplementary material 1 (XLS 47 kb)

References

  1. 1.
    Rachubinski RA, Verma DPS, Bergeron JJM (1980) Synthesis of rat liver microsomal cytochrome b5 by free polysomes. J Cell Biol 84:705–716Google Scholar
  2. 2.
    Okada Y, Frey AB, Guenthner RM, Oesch F, Sabatini DD, Kreibich G (1982) Studies on the biosynthesis of microsomal membrane proteins: site of synthesis and mode of insertion of cytochrome b5, cytochrome b5 reductase, cytochrome P-450 reductase and epoxide hydrolase. Eur J Biochem 122:393–402Google Scholar
  3. 3.
    Görlich D, Rapoport TA (1993) Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 75:615–630Google Scholar
  4. 4.
    Katz FN, Rothman JE, Lingappa VR, Blobel G, Lodish HF (1977) Membrane assembly in vitro: synthesis, glycosylation, and asymmetric insertion of a transmembrane protein. Proc Natl Acad Sci USA 74:3278–3282Google Scholar
  5. 5.
    Spiess M, Lodish HF (1986) An internal signal sequence: the asialoglycoprotein receptor membrane anchor. Cell 44:177–185Google Scholar
  6. 6.
    Kutay U, Hartmann E, Rapoport TA (1993) A class of membrane proteins with C-terminal anchor. Trends Cell Biol 3:72–75Google Scholar
  7. 7.
    Kutay U, Ahnert-Hilgen G, Hartmann E, Wiedenmann B, Rapoport TA (1995) Transport route for synaptobrevin via a novel pathway of insertion into the endoplasmic reticulum membrane. EMBO J 14:217–223Google Scholar
  8. 8.
    Steel GJ, Brownsword J, Stirling CJ (2002) Tail-anchored protein insertion into yeast ER requires a novel posttranslational mechanism which is independent of the SEC machinery. Biochemistry 41:11914–11920Google Scholar
  9. 9.
    Yabal M, Brambillasca S, Soffientini P, Pedrazzini E, Borgese N, Makarow M (2003) Translocation of the C terminus of a tail-anchored protein across the endoplasmic reticulum membrane in yeast mutants defective in signal peptide-driven translocation. J Biol Chem 278:3489–3496Google Scholar
  10. 10.
    Brambillasca S, Yabal M, Soffientini P, Stefanovic S, Makarow M, Hegde RS, Borgese N (2005) Transmembrane topogenesis of a tail-anchored protein is modulated by membrane lipid composition. EMBO J 24:2533–2542Google Scholar
  11. 11.
    Stefanovic S, Hegde RS (2007) Identification of a targeting factor for post-translational membrane protein insertion into the ER. Cell 128:1147–1159Google Scholar
  12. 12.
    Jäntti J, Keränen S, Toikkanen J, Ehnholm C, Södderlund H, Olkkonen VM (1994) Membrane insertion and intracellular transport of yeast syntaxin Sso2p in mammalian cells. J Cell Sci 107:3623–3633Google Scholar
  13. 13.
    Pedrazzini E, Villa A, Borgese N (1996) A mutant cytochrome b5 with a lengthened membrane anchor escapes from the endoplasmic reticulum and reaches the plasma membrane. Proc Natl Acad Sci USA 93:4207–4212Google Scholar
  14. 14.
    Linstedt AD, Foguet M, Renz M, Seelig HP, Glick BS, Hauri H-P (1995) A C-terminally-anchored Golgi protein is inserted into the endoplasmic reticulum and then transported to the Golgi apparatus. Proc Natl Acad Sci USA 92:5102–5105Google Scholar
  15. 15.
    Bulbarelli A, Sprocati T, Barberi M, Pedrazzini E, Borgese N (2002) Trafficking of tail-anchored proteins: transport from the endoplasmic reticulum to the plasma membrane and sorting between surface domains in polarised epithelial cells. J Cell Sci 115:1689–1702Google Scholar
  16. 16.
    Pfaff J, Rivera Monroy J, Jamieson C, Rajanala K, Vilardi F, Schwappach B, Kehlenbach RH (2016) Emery-Dreifuss muscular dystrophy mutations impair TRC40-mediated targeting of emerin to the inner nuclear membrane. J Cell Sci 129:502–516Google Scholar
  17. 17.
    Blenski M, Kehlenbach RH (2019) Targeting of LRRC59 to the endoplasmic reticulum and the inner nuclear membrane. Int J Mol Sci 20:334Google Scholar
  18. 18.
    Beilharz T, Egan B, Silver PA, Hofmann K, Lithgow T (2003) Bipartite signals mediate subcellular targeting of tail-anchored membrane proteins in Saccharomyces cerevisiae. J Biol Chem 278:8219–8223Google Scholar
  19. 19.
    Kalbfleisch T, Cambon A, Wattenberg BW (2007) A bioinformatics approach to identifying tail-anchored proteins in the human genome. Traffic 8:1687–1694Google Scholar
  20. 20.
    Pedrazzini E (2009) Tail-anchored proteins in plants. J Plant Biol 52:88–101Google Scholar
  21. 21.
    Kriechbaumer V, Shaw R, Mukherjee J, Bowsher CG, Harrison AM, Abell BM (2009) Subcellular distribution of tail-anchored proteins in Arabidopsis. Traffic 10:1753–1764Google Scholar
  22. 22.
    Borgese N, Righi M (2010) Remote origins of tail-anchored proteins. Traffic 11:877–885Google Scholar
  23. 23.
    Borgese N, Fasana E (2011) Targeting pathways of C-tail-anchored proteins. Biochim Biophys Acta 1808:937–946Google Scholar
  24. 24.
    Favaloro V, Spasic M, Schwappach B, Dobberstein B (2008) Distinct targeting pathways for the membrane insertion of tail-anchored (TA) proteins. J Cell Sci 121:1832–1840Google Scholar
  25. 25.
    Schuldiner M, Metz J, Schmid V, Denic V, Rakwalska M, Schmitt HD, Schwappach B, Weissman JS (2008) The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell 134:634–645Google Scholar
  26. 26.
    Jonikas MC, Collins SR, Denic V, Oh E, Quan EM, Schmid V, Weibezahn J, Schwappach B, Walter P, Weissman JS, Schuldiner M (2009) Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323:1693–1697Google Scholar
  27. 27.
    Mateja A, Keenan RJ (2018) A structural perspective on tail-anchored protein biogenesis by the GET pathway. Curr Opin Struct Biol 51:195–202Google Scholar
  28. 28.
    Chio US, Cho H, Shan SO (2017) Mechanisms of tail-anchored membrane protein targeting and insertion. Annu Rev Cell Dev Biol 33:417–438Google Scholar
  29. 29.
    Denic V, Dotsch V, Sinning I (2013) Endoplasmic reticulum targeting and insertion of tail-anchored membrane proteins by the GET pathway. Cold Spring Harb Perspect Biol 5:a013334Google Scholar
  30. 30.
    Chartron JW, Clemons WM Jr, Suloway CJ (2012) The complex process of GETting tail-anchored membrane proteins to the ER. Curr Opin Struct Biol 22:217–224Google Scholar
  31. 31.
    Mateja A, Szlachcic A, Downing ME, Dobosz M, Mariappan M, Hegde RS, Keenan RJ (2009) The structural basis of tail-anchored membrane protein recognition by Get3. Nature 461:361–366Google Scholar
  32. 32.
    Bozkurt G, Stjepanovic G, Vilardi F, Amlacher S, Wild K, Bange G, Favaloro V, Rippe K, Hurt E, Dobberstein B, Sinning I (2009) Structural insights into tail-anchored protein binding and membrane insertion by Get3. Proc Natl Acad Sci USA 106:21131–21136Google Scholar
  33. 33.
    Hu J, Li J, Qian X, Denic V, Sha B (2009) The crystal structures of yeast Get3 suggest a mechanism for tail-anchored protein membrane insertion. PLoS ONE 4:e8061Google Scholar
  34. 34.
    Suloway CJ, Chartron JW, Zaslaver M, Clemons WM Jr (2009) Model for eukaryotic tail-anchored protein binding based on the structure of Get3. Proc Natl Acad Sci USA 106:14849–14854Google Scholar
  35. 35.
    Yamagata A, Mimura H, Sato Y, Yamashita M, Yoshikawa A, Fukai S (2010) Structural insight into the membrane insertion of tail-anchored proteins by Get3. Genes Cells 15:29–41Google Scholar
  36. 36.
    Mateja A, Paduch M, Chang HY, Szydlowska A, Kossiakoff AA, Hegde RS, Keenan RJ (2015) Protein targeting. Structure of the Get3 targeting factor in complex with its membrane protein cargo. Science 347:1152–1155Google Scholar
  37. 37.
    Chio US, Chung S, Weiss S, Shan SO (2019) A chaperone lid ensures efficient and privileged client transfer during tail-anchored protein targeting. Cell Rep 26(37–44):e37Google Scholar
  38. 38.
    Denic V (2012) A portrait of the GET pathway as a surprisingly complicated young man. Trends Biochem Sci 37:411–417Google Scholar
  39. 39.
    Fleischer TC, Weaver CM, McAfee KJ, Jennings JL, Link AJ (2006) Systematic identification and functional screens of uncharacterized proteins associated with eukaryotic ribosomal complexes. Genes Dev 20:1294–1307Google Scholar
  40. 40.
    Cho H, Shan SO (2018) Substrate relay in an Hsp70-cochaperone cascade safeguards tail-anchored membrane protein targeting. EMBO J 37:e99264Google Scholar
  41. 41.
    Krysztofinska EM, Evans NJ, Thapaliya A, Murray JW, Morgan RML, Martinez-Lumbreras S, Isaacson RL (2017) Structure and interactions of the TPR domain of Sgt2 with yeast chaperones and Ybr137wp. Front Mol Biosci 4:68Google Scholar
  42. 42.
    Wang F, Brown EC, Mak G, Zhuang J, Denic V (2010) A chaperone cascade sorts proteins for posttranslational membrane insertion into the endoplasmic reticulum. Mol Cell 40:159–171Google Scholar
  43. 43.
    Kohl C, Tessarz P, von der Malsburg K, Zahn R, Bukau B, Mogk A (2011) Cooperative and independent activities of Sgt2 and Get5 in the targeting of tail-anchored proteins. Biol Chem 392:601–608Google Scholar
  44. 44.
    Gristick HB, Rao M, Chartron JW, Rome ME, Shan SO, Clemons WM Jr (2014) Crystal structure of ATP-bound Get3-Get4-Get5 complex reveals regulation of Get3 by Get4. Nat Struct Mol Biol 21:437–442Google Scholar
  45. 45.
    Suloway CJ, Rome ME, Clemons WM Jr (2012) Tail-anchor targeting by a Get3 tetramer: the structure of an archaeal homologue. EMBO J 31:707–719Google Scholar
  46. 46.
    Rome ME, Rao M, Clemons WM, Shan SO (2013) Precise timing of ATPase activation drives targeting of tail-anchored proteins. Proc Natl Acad Sci USA 110:7666–7671Google Scholar
  47. 47.
    Mariappan M, Mateja A, Dobosz M, Bove E, Hegde RS, Keenan RJ (2011) The mechanism of membrane-associated steps in tail-anchored protein insertion. Nature 477:61–66Google Scholar
  48. 48.
    Stefer S, Reitz S, Wang F, Wild K, Pang YY, Schwarz D, Bomke J, Hein C, Lohr F, Bernhard F, Denic V, Dotsch V, Sinning I (2011) Structural basis for tail-anchored membrane protein biogenesis by the Get3-receptor complex. Science 333:758–762Google Scholar
  49. 49.
    Wang F, Whynot A, Tung M, Denic V (2011) The mechanism of tail-anchored protein insertion into the ER membrane. Mol Cell 43:738–750Google Scholar
  50. 50.
    Wang F, Chan C, Weir NR, Denic V (2014) The Get1/2 transmembrane complex is an endoplasmic-reticulum membrane protein insertase. Nature 512:441–444Google Scholar
  51. 51.
    Rome ME, Chio US, Rao M, Gristick H, Shan SO (2014) Differential gradients of interaction affinities drive efficient targeting and recycling in the GET pathway. Proc Natl Acad Sci USA 111:E4929–E4935Google Scholar
  52. 52.
    Zalisko BE, Chan C, Denic V, Rock RS, Keenan RJ (2017) Tail-anchored protein insertion by a single get1/2 heterodimer. Cell Rep 20:2287–2293Google Scholar
  53. 53.
    Borgese N (2015) Membrane insertion of tail‐anchored proteins. eLS. Wiley, Chichester.  https://doi.org/10.1002/9780470015902.a0021876.pub2 Google Scholar
  54. 54.
    Yamamoto Y, Sakisaka T (2012) Molecular machinery for insertion of tail-anchored membrane proteins into the endoplasmic reticulum membrane in mammalian cells. Mol Cell 48:387–397Google Scholar
  55. 55.
    Vilardi F, Lorenz H, Dobberstein B (2011) WRB is the receptor for TRC40/Asna1-mediated insertion of tail-anchored proteins into the ER membrane. J Cell Sci 124:1301–1307Google Scholar
  56. 56.
    Vilardi F, Stephan M, Clancy A, Janshoff A, Schwappach B (2014) WRB and CAML are necessary and sufficient to mediate tail-anchored protein targeting to the ER membrane. PLoS ONE 9:e85033Google Scholar
  57. 57.
    Colombo SF, Cardani S, Maroli A, Vitiello A, Soffientini P, Crespi A, Bram RJ, Benfante R, Borgese N (2016) Tail-anchored protein insertion in mammals. Function and reciprocal interactions of the two subunits of the trc40 receptor. J Biol Chem 291:15292–15306Google Scholar
  58. 58.
    Shing JC, Bram RJ (2017) Yet another hump for CAML: support of cell survival independent of tail-anchored protein insertion. Cell Death Dis 8:e2960Google Scholar
  59. 59.
    Shing JC, Lindquist LD, Borgese N, Bram RJ (2017) CAML mediates survival of Myc-induced lymphoma cells independent of tail-anchored protein insertion. Cell Death Discov 3:16098Google Scholar
  60. 60.
    Mariappan M, Li X, Stefanovic S, Sharma A, Mateja A, Keenan RJ, Hegde RS (2010) A ribosome-associating factor chaperones tail-anchored membrane proteins. Nature 466:437–446Google Scholar
  61. 61.
    Leznicki P, Clancy A, Schwappach B, High S (2010) Bat3 promotes the membrane integration of tail-anchored proteins. J Cell Sci 123:2170–2178Google Scholar
  62. 62.
    Mock JY, Chartron JW, Zaslaver M, Xu Y, Ye Y, Clemons WM Jr (2015) Bag6 complex contains a minimal tail-anchor-targeting module and a mock BAG domain. Proc Natl Acad Sci USA 112:106–111Google Scholar
  63. 63.
    Shao S, Rodrigo-Brenni MC, Kivlen MH, Hegde RS (2017) Mechanistic basis for a molecular triage reaction. Science 355:298–302Google Scholar
  64. 64.
    Auld KL, Hitchcock AL, Doherty HK, Frietze S, Huang LS, Silver PA (2006) The conserved ATPase Get3/Arr4 modulates the activity of membrane-associated proteins in Saccharomyces cerevisiae. Genetics 174:215–227Google Scholar
  65. 65.
    Powis K, Schrul B, Tienson H, Gostimskaya I, Breker M, High S, Schuldiner M, Jakob U, Schwappach B (2013) Get3 is a holdase chaperone and moves to deposition sites for aggregated proteins when membrane targeting is blocked. J Cell Sci 126:473–483Google Scholar
  66. 66.
    Voth W, Schick M, Gates S, Li S, Vilardi F, Gostimskaya I, Southworth DR, Schwappach B, Jakob U (2014) The protein targeting factor Get3 functions as ATP-independent chaperone under oxidative stress conditions. Mol Cell 56:116–127Google Scholar
  67. 67.
    Farkas A, De Laurentiis EI, Schwappach B (2019) The natural history of Get3-like chaperones. Traffic 20:311–324Google Scholar
  68. 68.
    Lakkaraju AK, Thankappan R, Mary C, Garrison JL, Taunton J, Strub K (2012) Efficient secretion of small proteins in mammalian cells relies on Sec62-dependent posttranslational translocation. Mol Biol Cell 23:2712–2722Google Scholar
  69. 69.
    Johnson N, Vilardi F, Lang S, Leznicki P, Zimmermann R, High S (2012) TRC40 can deliver short secretory proteins to the Sec61 translocon. J Cell Sci 125:3612–3620Google Scholar
  70. 70.
    Rivera-Monroy J, Musiol L, Unthan-Fechner K, Farkas A, Clancy A, Coy-Vergara J, Weill U, Gockel S, Lin SY, Corey DP, Kohl T, Strobel P, Schuldiner M, Schwappach B, Vilardi F (2016) Mice lacking WRB reveal differential biogenesis requirements of tail-anchored proteins in vivo. Sci Rep 6:39464Google Scholar
  71. 71.
    Wang Q, Liu Y, Soetandyo N, Baek K, Hegde R, Ye Y (2011) A ubiquitin ligase-associated chaperone holdase maintains polypeptides in soluble states for proteasome degradation. Mol Cell 42:758–770Google Scholar
  72. 72.
    Rodrigo-Brenni MC, Gutierrez E, Hegde RS (2014) Cytosolic quality control of mislocalized proteins requires RNF126 recruitment to Bag6. Mol Cell 55:227–237Google Scholar
  73. 73.
    Payapilly A, High S (2014) BAG6 regulates the quality control of a polytopic ERAD substrate. J Cell Sci 127:2898–2909Google Scholar
  74. 74.
    Wunderley L, Leznicki P, Payapilly A, High S (2014) SGTA regulates the cytosolic quality control of hydrophobic substrates. J Cell Sci 127:4728–4739Google Scholar
  75. 75.
    Krysztofinska EM, Martinez-Lumbreras S, Thapaliya A, Evans NJ, High S, Isaacson RL (2016) Structural and functional insights into the E3 ligase, RNF126. Sci Rep 6:26433Google Scholar
  76. 76.
    Tanaka H, Takahashi T, Xie Y, Minami R, Yanagi Y, Hayashishita M, Suzuki R, Yokota N, Shimada M, Mizushima T, Kuwabara N, Kato R, Kawahara H (2016) A conserved island of BAG6/Scythe is related to ubiquitin domains and participates in short hydrophobicity recognition. FEBS J 283:662–677Google Scholar
  77. 77.
    Leznicki P, Roebuck QP, Wunderley L, Clancy A, Krysztofinska EM, Isaacson RL, Warwicker J, Schwappach B, High S (2013) The association of BAG6 with SGTA and tail-anchored proteins. PLoS ONE 8:e59590Google Scholar
  78. 78.
    Mock JY, Xu Y, Ye Y, Clemons WM Jr (2017) Structural basis for regulation of the nucleo-cytoplasmic distribution of Bag6 by TRC35. Proc Natl Acad Sci USA 114:11679–11684Google Scholar
  79. 79.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2014) Molecular biology of the cell, 6th edn. Garland Science, New YorkGoogle Scholar
  80. 80.
    Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Guldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kotter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang CY, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnston M (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391Google Scholar
  81. 81.
    Srivastava R, Zalisko BE, Keenan RJ, Howell SH (2017) The get system inserts the tail-anchored protein, syp72, into endoplasmic reticulum membranes. Plant Physiol 173:1137–1145Google Scholar
  82. 82.
    Xing S, Mehlhorn DG, Wallmeroth N, Asseck LY, Kar R, Voss A, Denninger P, Schmidt VA, Schwarzlander M, Stierhof YD, Grossmann G, Grefen C (2017) Loss of GET pathway orthologs in Arabidopsis thaliana causes root hair growth defects and affects SNARE abundance. Proc Natl Acad Sci USA 114:E1544–E1553Google Scholar
  83. 83.
    Casson J, McKenna M, Hassdenteufel S, Aviram N, Zimmerman R, High S (2017) Multiple pathways facilitate the biogenesis of mammalian tail-anchored proteins. J Cell Sci 130:3851–3861Google Scholar
  84. 84.
    Mukhopadhyay R, Ho YS, Swiatek PJ, Rosen BP, Bhattacharjee H (2006) Targeted disruption of the mouse Asna1 gene results in embryonic lethality. FEBS Lett 580:3889–3894Google Scholar
  85. 85.
    Tran DD, Russell HR, Sutor SL, van Deursen J, Bram RJ (2003) CAML is required for efficient EGF receptor recycling. Dev Cell 5:245–256Google Scholar
  86. 86.
    Norlin S, Parekh VS, Naredi P, Edlund H (2016) Asna1/TRC40 controls β-cell function and endoplasmic reticulum homeostasis by ensuring retrograde transport. Diabetes 65:110–119Google Scholar
  87. 87.
    Vogl C, Panou I, Yamanbaeva G, Wichmann C, Mangosing SJ, Vilardi F, Indzhykulian AA, Pangrsic T, Santarelli R, Rodriguez-Ballesteros M, Weber T, Jung S, Cardenas E, Wu X, Wojcik SM, Kwan KY, Del Castillo I, Schwappach B, Strenzke N, Corey DP, Lin SY, Moser T (2016) Tryptophan-rich basic protein (WRB) mediates insertion of the tail-anchored protein otoferlin and is required for hair cell exocytosis and hearing. EMBO J 35:2536–2552Google Scholar
  88. 88.
    Coy-Vergara J, Rivera-Monroy J, Urlaub H, Lenz C, Schwappach B (2019) A trap mutant reveals the physiological client spectrum of TRC40. J Cell Sci.  https://doi.org/10.1242/jcs.230094
  89. 89.
    Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132Google Scholar
  90. 90.
    Zhao G, London E (2006) An amino acid “transmembrane tendency” scale that approaches the theoretical limit to accuracy for prediction of transmembrane helices: relationship to biological hydrophobicity. Protein Sci 15:1987–2001Google Scholar
  91. 91.
    Brambillasca S, Yabal M, Makarow M, Borgese N (2006) Unassisted translocation of large polypeptide domains across phospholipid bilayers. J Cell Biol 175:767–777Google Scholar
  92. 92.
    Rao M, Okreglak V, Chio US, Cho H, Walter P, Shan SO (2016) Multiple selection filters ensure accurate tail-anchored membrane protein targeting. Elife 5:e21301Google Scholar
  93. 93.
    Costello JL, Castro IG, Camoes F, Schrader TA, McNeall D, Yang J, Giannopoulou EA, Gomes S, Pogenberg V, Bonekamp NA, Ribeiro D, Wilmanns M, Jedd G, Islinger M, Schrader M (2017) Predicting the targeting of tail-anchored proteins to subcellular compartments in mammalian cells. J Cell Sci 130:1675–1687Google Scholar
  94. 94.
    Guna A, Volkmar N, Christianson JC, Hegde RS (2018) The ER membrane protein complex is a transmembrane domain insertase. Science 359:470–473Google Scholar
  95. 95.
    Colombo SF, Longhi R, Borgese N (2009) The role of cytosolic proteins in the insertion of tail-anchored proteins into phospholipid bilayers. J Cell Sci 122:2383–2392Google Scholar
  96. 96.
    Aviram N, Ast T, Costa EA, Arakel EC, Chuartzman SG, Jan CH, Hassdenteufel S, Dudek J, Jung M, Schorr S, Zimmermann R, Schwappach B, Weissman JS, Schuldiner M (2016) The SND proteins constitute an alternative targeting route to the endoplasmic reticulum. Nature 540:134–138Google Scholar
  97. 97.
    Hassdenteufel S, Sicking M, Schorr S, Aviram N, Fecher-Trost C, Schuldiner M, Jung M, Zimmermann R, Lang S (2017) hSnd2 protein represents an alternative targeting factor to the endoplasmic reticulum in human cells. FEBS Lett 591:3211–3224Google Scholar
  98. 98.
    Hassdenteufel S, Johnson N, Paton AW, Paton JC, High S, Zimmermann R (2018) Chaperone-mediated Sec61 channel gating during ER import of small precursor proteins overcomes Sec61 inhibitor-reinforced energy barrier. Cell Rep 23:1373–1386Google Scholar
  99. 99.
    Wideman JG (2015) The ubiquitous and ancient ER membrane protein complex (EMC): tether or not? F1000Res 4:624Google Scholar
  100. 100.
    Christianson JC, Olzmann JA, Shaler TA, Sowa ME, Bennett EJ, Richter CM, Tyler RE, Greenblatt EJ, Harper JW, Kopito RR (2011) Defining human ERAD networks through an integrative mapping strategy. Nat Cell Biol 14:93–105Google Scholar
  101. 101.
    Bircham PW, Maass DR, Roberts CA, Kiew PY, Low YS, Yegambaram M, Matthews J, Jack CA, Atkinson PH (2011) Secretory pathway genes assessed by high-throughput microscopy and synthetic genetic array analysis. Mol BioSyst 7:2589–2598Google Scholar
  102. 102.
    Louie RJ, Guo J, Rodgers JW, White R, Shah N, Pagant S, Kim P, Livstone M, Dolinski K, McKinney BA, Hong J, Sorscher EJ, Bryan J, Miller EA, Hartman JLT (2012) A yeast phenomic model for the gene interaction network modulating CFTR-DeltaF508 protein biogenesis. Genome Med 4:103Google Scholar
  103. 103.
    Richard M, Boulin T, Robert VJ, Richmond JE, Bessereau JL (2013) Biosynthesis of ionotropic acetylcholine receptors requires the evolutionarily conserved ER membrane complex. Proc Natl Acad Sci USA 110:E1055–E1063Google Scholar
  104. 104.
    Satoh T, Ohba A, Liu Z, Inagaki T, Satoh AK (2015) dPob/EMC is essential for biosynthesis of rhodopsin and other multi-pass membrane proteins in Drosophila photoreceptors. Elife 4:e06306Google Scholar
  105. 105.
    Tang X, Snowball JM, Xu Y, Na CL, Weaver TE, Clair G, Kyle JE, Zink EM, Ansong C, Wei W, Huang M, Lin X, Whitsett JA (2017) EMC3 coordinates surfactant protein and lipid homeostasis required for respiration. J Clin Invest 127:4314–4325Google Scholar
  106. 106.
    Shurtleff MJ, Itzhak DN, Hussmann JA, Schirle Oakdale NT, Costa EA, Jonikas M, Weibezahn J, Popova KD, Jan CH, Sinitcyn P, Vembar SS, Hernandez H, Cox J, Burlingame AL, Brodsky JL, Frost A, Borner GH, Weissman JS (2018) The ER membrane protein complex interacts cotranslationally to enable biogenesis of multipass membrane proteins. Elife 7:e37018Google Scholar
  107. 107.
    Chitwood PJ, Juszkiewicz S, Guna A, Shao S, Hegde RS (2018) EMC is required to initiate accurate membrane protein topogenesis. Cell 175(1507–1519):e1516Google Scholar
  108. 108.
    Abell BM, Pool MR, Schlenker O, Sinning I, High S (2004) Signal recognition particle mediates post-translational targeting in eukaryotes. EMBO J 23:2755–2764Google Scholar
  109. 109.
    Abell BM, Rabu C, Leznicki P, Young JC, High S (2007) Post-translational integration of tail-anchored proteins is facilitated by defined molecular chaperones. J Cell Sci 120:1743–1751Google Scholar
  110. 110.
    Walter P, Johnson AE (1994) Signal sequence recognition and protein targeting to the endoplasmic reticulum mem brane. Ann Rev Cell Biol 10:87–120Google Scholar
  111. 111.
    Peschke M, Le Goff M, Koningstein GM, Karyolaimos A, de Gier JW, van Ulsen P, Luirink J (2018) SRP, FtsY, DnaK and YidC are required for the biogenesis of the E. coli tail-anchored membrane proteins DjlC and Flk. J Mol Biol 430:389–403Google Scholar
  112. 112.
    Kim J, Na YJ, Park SJ, Baek SH, Kim DH (2019) Biogenesis of chloroplast outer envelope membrane proteins. Plant Cell Rep.  https://doi.org/10.1007/s00299-019-02381-6 Google Scholar
  113. 113.
    Borgese N, Colombo S, Pedrazzini E (2003) The tale of tail-anchored proteins: coming from the cytosol and looking for a membrane. J Cell Biol 161:1013–1019Google Scholar
  114. 114.
    Borgese N, Brambillasca S, Colombo S (2007) How tails guide tail-anchored proteins to their destinations. Curr Opin Cell Biol 19:368–375Google Scholar
  115. 115.
    Lin D-F Jr., Fry M, Saladi S, Clemons WM (2019) The client-binding domain of the cochaperone SGTA/Sgt2 has a 3 helical-hand structure that binds a short hydrophobic helix. bioRxiv preprint.  https://doi.org/10.1101/517573 Google Scholar
  116. 116.
    Kunze M (2018) Predicting peroxisomal targeting signals to elucidate the peroxisomal proteome of mammals. Subcell Biochem 89:157–199Google Scholar
  117. 117.
    van der Zand A, Braakman I, Tabak HF (2010) Peroxisomal membrane proteins insert into the endoplasmic reticulum. Mol Biol Cell 21:2057–2065Google Scholar
  118. 118.
    Lam SK, Yoda N, Schekman R (2010) A vesicle carrier that mediates peroxisome protein traffic from the endoplasmic reticulum. Proc Natl Acad Sci USA 107:21523–21528Google Scholar
  119. 119.
    Halbach A, Landgraf C, Lorenzen S, Rosenkranz K, Volkmer-Engert R, Erdmann R, Rottensteiner H (2006) Targeting of the tail-anchored peroxisomal membrane proteins PEX26 and PEX15 occurs through C-terminal PEX19-binding sites. J Cell Sci 119:2508–2517Google Scholar
  120. 120.
    Yagita Y, Hiromasa T, Fujiki Y (2013) Tail-anchored PEX26 targets peroxisomes via a PEX19-dependent and TRC40-independent class I pathway. J Cell Biol 200:651–666Google Scholar
  121. 121.
    Buentzel J, Vilardi F, Lotz-Havla A, Gartner J, Thoms S (2015) Conserved targeting information in mammalian and fungal peroxisomal tail-anchored proteins. Sci Rep 5:17420Google Scholar
  122. 122.
    Borgese N, Gazzoni I, Barberi M, Colombo S, Pedrazzini E (2001) Targeting of a tail-anchored protein to endoplasmic reticulum and mitochondrial outer membrane by independent but competing pathways. Mol Biol Cell 12:2482–2496Google Scholar
  123. 123.
    Chen Y, Pieuchot L, Loh RA, Yang J, Kari TM, Wong JY, Jedd G (2014) Hydrophobic handoff for direct delivery of peroxisome tail-anchored proteins. Nat Commun 5:5790Google Scholar
  124. 124.
    Hettema EH, Erdmann R, van der Klei I, Veenhuis M (2014) Evolving models for peroxisome biogenesis. Curr Opin Cell Biol 29:25–30Google Scholar
  125. 125.
    Figueiredo Costa B, Cassella P, Colombo SF, Borgese N (2018) Discrimination between the endoplasmic reticulum and mitochondria by spontaneously inserting tail-anchored proteins. Traffic 19:182–197Google Scholar
  126. 126.
    Spatz L, Strittmatter P (1971) A form of cytochrome b5 that contains an additional hydrophobic sequence of 40 amino acids. Proc Natl Acad Sci USA 68:1042–1046Google Scholar
  127. 127.
    Dembowski M, Kunkele KP, Nargang FE, Neupert W, Rapaport D (2001) Assembly of Tom6 and Tom7 into the TOM core complex of Neurospora crassa. J Biol Chem 276:17679–17685Google Scholar
  128. 128.
    Stojanovski D, Guiard B, Kozjak-Pavlovic V, Pfanner N, Meisinger C (2007) Alternative function for the mitochondrial SAM complex in biogenesis of alpha-helical TOM proteins. J Cell Biol 179:881–893Google Scholar
  129. 129.
    Thornton N, Stroud DA, Milenkovic D, Guiard B, Pfanner N, Becker T (2010) Two modular forms of the mitochondrial sorting and assembly machinery are involved in biogenesis of alpha-helical outer membrane proteins. J Mol Biol 396:540–549Google Scholar
  130. 130.
    Setoguchi K, Otera H, Mihara K (2006) Cytosolic factor- and TOM-independent import of C-tail-anchored mitochondrial outer membrane proteins. EMBO J 25:5635–5647Google Scholar
  131. 131.
    Kemper C, Habib SJ, Engl G, Heckmeyer P, Dimmer KS, Rapaport D (2008) Integration of tail-anchored proteins into the mitochondrial outer membrane does not require any known import components. J Cell Sci 121:1990–1998Google Scholar
  132. 132.
    Dimmer KS, Papic D, Schumann B, Sperl D, Krumpe K, Walther DM, Rapaport D (2012) A crucial role for Mim2 in the biogenesis of mitochondrial outer membrane proteins. J Cell Sci 125:3464–3473Google Scholar
  133. 133.
    Krumpe K, Frumkin I, Herzig Y, Rimon N, Ozbalci C, Brugger B, Rapaport D, Schuldiner M (2012) Ergosterol content specifies targeting of tail-anchored proteins to mitochondrial outer membranes. Mol Biol Cell 23:3927–3935Google Scholar
  134. 134.
    Itakura E, Zavodszky E, Shao S, Wohlever ML, Keenan RJ, Hegde RS (2016) Ubiquilins chaperone and triage mitochondrial membrane proteins for degradation. Mol Cell 63:21–33Google Scholar
  135. 135.
    Cichocki BA, Krumpe K, Vitali DG, Rapaport D (2018) Pex19 is involved in importing dually targeted tail-anchored proteins to both mitochondria and peroxisomes. Traffic 19:770–785Google Scholar
  136. 136.
    Colbeau A, Nachbaur J, Vignais PM (1971) Enzyme characterization and lipid composition of rat liver subcellular membranes. Biochim Biophys Acta 249:462–492Google Scholar
  137. 137.
    Ardail D, Privat JP, Egret-Charlier M, Levrat C, Lerme F, Louisot P (1990) Mitochondrial contact sites. Lipid composition and dynamics. J Biol Chem 265:18797–18802Google Scholar
  138. 138.
    Tatsuta T, Langer T (2017) Intramitochondrial phospholipid trafficking. Biochim Biophys Acta 1862:81–89Google Scholar
  139. 139.
    Koch A, Yoon Y, Bonekamp NA, McNiven MA, Schrader M (2005) A role for Fis1 in both mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell 16:5077–5086Google Scholar
  140. 140.
    Gandre-Babbe S, van der Bliek AM (2008) The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell 19:2402–2412Google Scholar
  141. 141.
    Dixit E, Boulant S, Zhang Y, Lee AS, Odendall C, Shum B, Hacohen N, Chen ZJ, Whelan SP, Fransen M, Nibert ML, Superti-Furga G, Kagan JC (2010) Peroxisomes are signaling platforms for antiviral innate immunity. Cell 141:668–681Google Scholar
  142. 142.
    Huber N, Guimaraes S, Schrader M, Suter U, Niemann A (2013) Charcot-Marie-Tooth disease-associated mutants of GDAP1 dissociate its roles in peroxisomal and mitochondrial fission. EMBO Rep 14:545–552Google Scholar
  143. 143.
    Delille HK, Schrader M (2008) Targeting of hFis1 to peroxisomes is mediated by Pex19p. J Biol Chem 283:31107–31115Google Scholar
  144. 144.
    Costello JL, Passmore JB, Islinger M, Schrader M (2018) Multi-localized proteins: the peroxisome-mitochondria connection. Subcell Biochem 89:383–415Google Scholar
  145. 145.
    Chen YC, Umanah GK, Dephoure N, Andrabi SA, Gygi SP, Dawson TM, Dawson VL, Rutter J (2014) Msp1/ATAD1 maintains mitochondrial function by facilitating the degradation of mislocalized tail-anchored proteins. EMBO J 33:1548–1564Google Scholar
  146. 146.
    Okreglak V, Walter P (2014) The conserved AAA-ATPase Msp1 confers organelle specificity to tail-anchored proteins. Proc Natl Acad Sci USA 111:8019–8024Google Scholar
  147. 147.
    Wohlever ML, Mateja A, McGilvray PT, Day KJ, Keenan RJ (2017) Msp1 is a membrane protein dislocase for tail-anchored proteins. Mol Cell.  https://doi.org/10.1016/j.molcel.2017.06.019 Google Scholar
  148. 148.
    Weir NR, Kamber RA, Martenson JS, Denic V (2017) The AAA protein Msp1 mediates clearance of excess tail-anchored proteins from the peroxisomal membrane. Elife 6:e28507Google Scholar
  149. 149.
    Rivera Monroy J (2017) Role of WRB protein in cardiac function. PhD Thesis, Georg-August Universitat Gottingen, pp 26–28Google Scholar
  150. 150.
    Amsterdam A, Nissen RM, Sun Z, Swindell EC, Farrington S, Hopkins N (2004) Identification of 315 genes essential for early zebrafish development. Proc Natl Acad Sci USA 101:12792–12797Google Scholar
  151. 151.
    Daniele LL, Emran F, Lobo GP, Gaivin RJ, Perkins BD (2016) Mutation of wrb, a component of the guided entry of tail-anchored protein pathway, disrupts photoreceptor synapse structure and function. Invest Ophthalmol Vis Sci 57:2942–2954Google Scholar
  152. 152.
    Lin SY, Vollrath MA, Mangosing S, Shen J, Cardenas E, Corey DP (2016) The zebrafish pinball wizard gene encodes WRB, a tail-anchored-protein receptor essential for inner-ear hair cells and retinal photoreceptors. J Physiol 594:895–914Google Scholar
  153. 153.
    Tran DD, Edgar CE, Heckman KL, Sutor SL, Huntoon CJ, van Deursen J, McKean DL, Bram RJ (2005) CAML is a p56Lck-interacting protein that is required for thymocyte development. Immunity 23:139–152Google Scholar
  154. 154.
    Desmots F, Russell HR, Lee Y, Boyd K, McKinnon PJ (2005) The reaper-binding protein scythe modulates apoptosis and proliferation during mammalian development. Mol Cell Biol 25:10329–10337Google Scholar
  155. 155.
    Desmots F, Russell HR, Michel D, McKinnon PJ (2008) Scythe regulates apoptosis-inducing factor stability during endoplasmic reticulum stress-induced apoptosis. J Biol Chem 283:3264–3271Google Scholar
  156. 156.
    Sebti S, Prebois C, Perez-Gracia E, Bauvy C, Desmots F, Pirot N, Gongora C, Bach AS, Hubberstey AV, Palissot V, Berchem G, Codogno P, Linares LK, Liaudet-Coopman E, Pattingre S (2014) BAT3 modulates p300-dependent acetylation of p53 and autophagy-related protein 7 (ATG7) during autophagy. Proc Natl Acad Sci USA 111:4115–4120Google Scholar
  157. 157.
    Murata K, Degmetich S, Kinoshita M, Shimada E (2009) Expression of the congenital heart disease 5/tryptophan rich basic protein homologue gene during heart development in medaka fish, Oryzias latipes. Dev Growth Differ 51:95–107Google Scholar
  158. 158.
    Bryda EC, Johnson NT, Ohlemiller KK, Besch-Williford CL, Moore E, Bram RJ (2012) Conditional deletion of calcium-modulating cyclophilin ligand causes deafness in mice. Mamm Genome 23:270–276Google Scholar
  159. 159.
    Wang Y, Wang D, Ren F, Zhang Y, Lin F, Hou N, Cheng X, Zhang P, Wang Y, Jia B, Yang X, Chang Z (2012) Generation of mice with conditional null allele for GdX/Ubl4A. Genesis 50:534–542Google Scholar
  160. 160.
    Liang J, Li J, Fu Y, Ren F, Xu J, Zhou M, Li P, Feng H, Wang Y (2018) GdX/UBL4A null mice exhibit mild kyphosis and scoliosis accompanied by dysregulation of osteoblastogenesis and chondrogenesis. Cell Biochem Funct 36:129–136Google Scholar
  161. 161.
    Sojka S, Amin NM, Gibbs D, Christine KS, Charpentier MS, Conlon FL (2014) Congenital heart disease protein 5 associates with CASZ1 to maintain myocardial tissue integrity. Development 141:3040–3049Google Scholar
  162. 162.
    Zhao Y, Lin Y, Zhang H, Manas A, Tang W, Zhang Y, Wu D, Lin A, Xiang J (2015) Ubl4A is required for insulin-induced Akt plasma membrane translocation through promotion of Arp2/3-dependent actin branching. Proc Natl Acad Sci USA 112:9644–9649Google Scholar
  163. 163.
    Philp LK, Day TK, Butler MS, Laven-Law G, Jindal S, Hickey TE, Scher HI, Butler LM, Tilley WD (2016) Small glutamine-rich tetratricopeptide repeat-containing protein alpha (SGTA) Ablation Limits offspring viability and growth in mice. Sci Rep 6:28950Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Neuroscience and BIOMETRA DepartmentConsiglio Nazionale delle Ricerche and Università degli Studi di MilanoMilanItaly
  2. 2.Department of Molecular BiologyUniversity of Göttingen Medical CentreGöttingenGermany

Personalised recommendations