The Protein Journal

, Volume 35, Issue 2, pp 136–144 | Cite as

Unique Characteristics of Recombinant Hybrid Manganese Superoxide Dismutase from Staphylococcus equorum and S. saprophyticus

  • Debbie S. Retnoningrum
  • Anis Puji Rahayu
  • Dina Mulyanti
  • Astrid Dita
  • Oliver Valerius
  • Wangsa T. Ismaya


A recombinant hybrid of manganese dependent-superoxide dismutase of Staphylococcus equorum and S. saprophyticus has successfully been overexpressed in Escherichia coli BL21(DE3), purified, and characterized. The recombinant enzyme suffered from degradation and aggregation upon storage at −20 °C, but not at room temperature nor in cold. Chromatographic analysis in a size exclusion column suggested the occurrence of dimeric form, which has been reported to contribute in maintaining the stability of the enzyme. Effect of monovalent (Na+, K+), divalent (Ca2+, Mg2+), multivalent (Mn2+/4+, Zn2+/4+) cations and anions (Cl, SO4 2−) to the enzyme stability or dimeric state depended on type of cation or anion, its concentration, and pH. However, tremendous effect was observed with 50 mM ZnSO4, in which thermostability of both the dimer and monomer was increased. Similar situation was not observed with MnSO4, and its presence was detrimental at 200 mM. Finally, chelating agent appeared to destabilize the dimer around neutral pH and dissociate it at basic pH. The monomer remained stable upon addition of ethylene diamine tetraacetic acid. Here we reported unique characteristics and stability of manganese dependent-superoxide dismutase from S. equorum/saprophyticus.


Dimer Manganese dependent-superoxide dismutase Monomer Recombinant hybrid protein Staphylococcus equorum Thermal stability 



Ethylene diamine tetra acetate


Liquid chromatography tandem mass spectrometry


Open reading frame


Polyacrylamide gel electrophoresis


Recombinant hybrid manganese superoxide dismutase from S. saprophyticus/S. equorum


Sodium dodecyl sulphate




Superoxide dismutase


Melting temperature


Melting temperature of dimer


Melting temperature of monomer



This work is financially supported by Program Riset Desentralisasi DIKTI 2013 and Program Riset Inovasi 2015.

Supplementary material

10930_2016_9650_MOESM1_ESM.doc (1 mb)
Supplementary material 1 (DOC 1068 kb)


  1. 1.
    McCord JM, Fridovich I (1969) Superoxide dismutase, an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244(22):6049–6055Google Scholar
  2. 2.
    Halliwell B (1994) Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344(8924):721–724. doi: 10.1016/s0140-6736(94)92211-x CrossRefGoogle Scholar
  3. 3.
    Maritim AC, Sanders RA, Watkins JB (2003) Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17(1):24–38CrossRefGoogle Scholar
  4. 4.
    Choi J, Rees HD, Weintraub ST, Levey AI, Chin LS, Li L (2005) Oxidative modifications and aggregation of Cu, Zn-superoxide dismutase associated with alzheimer and parkinson diseases. J Biol Chem 280(12):11648–11655CrossRefGoogle Scholar
  5. 5.
    Yasui K, Baba A (2006) Therapeutic potential of superoxide dismutase (SOD) for resolution of inflammation. Inflamm Res 55:359–363CrossRefGoogle Scholar
  6. 6.
    Lods LM, Dres C, Johnson C, Scholz DB, Brooks GJ (2000) The future of enzymes in cosmetics. Int J Cosmet Sci 22:85–94CrossRefGoogle Scholar
  7. 7.
    Indrayati A, Asyarie S, Suciati T, Retnoningrum DS (2014) Study on the properties of purified recombinant superoxide dismutase from Staphylococcus equorum, a local isolate from Indonesia. Int J Pharm Pharm Sci 6(11):1–6Google Scholar
  8. 8.
    Seatovic S, Gligic L, Radulovic E, Jankov RM (2004) Purification and partial characterization of superoxide dismutase from the thermophilic bacteria Thermothrix sp. J Serb Chem Soc 69(1):9–16CrossRefGoogle Scholar
  9. 9.
    Areekit S, Kanjanavas P, Khawsak P, Pakpitchareon A, Potivejkul K, Chansiri G, Chansiri K (2011) Cloning, expression, and characterization of thermotolerant manganese superoxide dismutase from Bacillus sp. MHS47. Int J Mol Sci. doi: 10.3390/ijms12010844 Google Scholar
  10. 10.
    Ken C-F, Lee C-C, Duan K-J, Lin C-T (2005) Unusual stability of manganese superoxide dismutase from a new species, Tatumella ptyseos ct: its gene structure, expression, and enzyme properties. Protein Expr Purif 40(1):42–50CrossRefGoogle Scholar
  11. 11.
    Wang W, Ma T, Zhang B, Yao N, Li M, Cui L, Li G, Ma Z, Cheng J (2014) A novel mechanism of protein thermostability: a unique N-terminal domain confers heat resistance to Fe/Mn-SODs. Sci Rep 4:1–9Google Scholar
  12. 12.
    Li D, Gao J, Li Y, Lu J (2005) A thermostable manganese-containing superoxide dismutase from the thermophilic fungus Thermomyces lanuginosus. Extremophiles 9(1):1–6CrossRefGoogle Scholar
  13. 13.
    Wang X, Yang H, Ruan L, Liu X, Li F, Xu X (2008) Cloning and characterization of a thermostable superoxide dismutase from the thermophilic bacterium Rhodothermus sp. XMH10. J Ind Microbiol Biotechnol 35(2):133–139CrossRefGoogle Scholar
  14. 14.
    Zhu Y, Li H, Zhang X, Zhang C, Xiang J, Liu G (2011) Characterization of a thermostable manganese-containing superoxide dismutase from inshore hot spring thermophile Thermus sp. JM1. Acta Oceanol Sin 30(6):95–103CrossRefGoogle Scholar
  15. 15.
    Song C, Sheng L, Zhang X (2012) Preparation and characterization of a thermostable enzyme (Mn-SOD) immobilized on supermagnetic nanoparticles. Appl Microbiol Biotechnol 96(1):123–132. doi: 10.1007/s00253-011-3835-9 CrossRefGoogle Scholar
  16. 16.
    Miller A (2004) Superoxide dismutases: active sites that save, but a protein that kills. Curr Opin Chem Biol 8(2):162–168CrossRefGoogle Scholar
  17. 17.
    Wuerges J, Lee J-W, Yim Y-I, Yim H-S, Kang S-O, Carugo KD (2004) Crystal structure of nickel-containing superoxide dismutase reveals another type of active site. Proc Natl Acad Sci USA 101(23):8569–8574. doi: 10.1073/pnas.0308514101 CrossRefGoogle Scholar
  18. 18.
    Borgstahl G, Parge H, Hickey M, Beyer W, Hallewell R, Tainer J (1992) The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles. Cell 71(1):107–118. doi: 10.1016/0092-8674(92)90270-M CrossRefGoogle Scholar
  19. 19.
    Breusegem FV, Slooten L, Stassart J-M, Moens T, Botterman J, Montagu MV, Inze D (1999) Overproduction of Arabidopsis thaliana Fe-SOD confers oxidative stress tolerance to transgenic maize. Plant Cell Physiol 40(5):515–523CrossRefGoogle Scholar
  20. 20.
    Abreu IA, Cabelli DE (2010) Superoxide dismutases—a review of the metal-associated mechanistic variations. Biochim Biophys Acta 1804:263–274CrossRefGoogle Scholar
  21. 21.
    Liu J, Yin M, Zhu H, Lu J, Cui Z (2011) Purification and characterization of a hyperthermostable Mn-superoxide dismutase from Thermus thermophilus HB27. Extremophiles 15(2):221–226CrossRefGoogle Scholar
  22. 22.
    Song C, Li H, Sheng L, Zhang X (2015) Characterization of the interaction between superoxide dismutase and 2-oxoisovalerate dehydrogenase. Gene 568(1):1–7CrossRefGoogle Scholar
  23. 23.
    Indrayati A (2011) 16S rDNA Based identification of novel superoxide dismutase producing bacteria isolate from Indonesia. Microbiol Indones 5(2):88–93CrossRefGoogle Scholar
  24. 24.
    Ghebremedhin B, Layer F, König W, König B (2008) Genetic classification and distinguishing of Staphylococcus sp. based on different partial gap, 16S rRNA, hsp60, rpoB, sodA, and tuf gene sequences. J Clin Microbiol 46(3):1019–1025. doi: 10.1128/JCM.02058-07 CrossRefGoogle Scholar
  25. 25.
    Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, New York, pp 571–607CrossRefGoogle Scholar
  26. 26.
    Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi: 10.1016/0003-2697(76)90527-3 CrossRefGoogle Scholar
  27. 27.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to imageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefGoogle Scholar
  28. 28.
    Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68(5):850–858. doi: 10.1021/ac950914h CrossRefGoogle Scholar
  29. 29.
    Sun Y, Oberley LW, Li L (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34(3):497–500Google Scholar
  30. 30.
    Kimoto R, Funahashi T, Yamamoto N, Miyoshi S, Narimatsu S, Yamamoto S (2001) Identification and characterization of the sodA genes encoding manganese superoxide dismutases in Vibrio parahaemolyticus, Vibrio mimicus, and Vibrio vulnificus. Microbiol Immunol 45(2):135–142CrossRefGoogle Scholar
  31. 31.
    Yainoy S, Isarankura-Na-Ayudhya C, Tantimongcolwat T, Prachayasittikul V (2007) Cloning of active human manganese superoxide dismutase and its oxidative protection in Escherichia coli. Pak J Biol Sci 10(20):3541–3548CrossRefGoogle Scholar
  32. 32.
    Kostyuk VA, Potapovich AI, Strigunova EN, Kostyuk TV, Afanas’ev IB (2004) Experimental evidence that flavonoid metal complexes may act as mimics of superoxide dismutase. Arch Biochem Biophys 428:204–208CrossRefGoogle Scholar
  33. 33.
    Ericsson U, Hallberg B, Detitta G, Dekker N, Nordlund P (2006) Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal Biochem 357(2):289–298CrossRefGoogle Scholar
  34. 34.
    Gaupp R, Ledala N, Somerville GA (2012) Staphylococcal response to oxidative stress. Front Cell Infect Microbiol 2:33. doi: 10.3389/fcimb.2012.00033 CrossRefGoogle Scholar
  35. 35.
    McWilliam H, Li W, Uludag M, Squizzato S, Park Y, Buso N, Cowley A, Lopez R (2013) Analysis tool web services from the EMBL-EBI. Nucleic Acids Res 41:W597–W600CrossRefGoogle Scholar
  36. 36.
    Barrière C, Brückner R, Talon R (2001) Characterization of the single superoxide dismutase of Staphylococcus xylosus. Appl Environ Microbiol 67(9):4096–4104. doi: 10.1128/AEM.67.9.4096-4104.2001 CrossRefGoogle Scholar
  37. 37.
    Tanghe A, Dijck PV, Thevelein JM (2003) Determinants of freeze tolerance in microorganisms, physiological importance, and biotechnological applications. Adv Appl Microbiol 53:129–176CrossRefGoogle Scholar
  38. 38.
    Dawson NJ, Katzenback BA, Storey KB (2015) Free-radical first responders: the characterization of CuZnSOD and MnSOD regulation during freezing of the freeze-tolerant North American wood frog Rana sylvatica. Biochim Biophys Acta 1850(1):97–106. doi: 10.1016/j.bbagen.2014.10.003 CrossRefGoogle Scholar
  39. 39.
    McKersie B, Chen Y, de Beus M, Bowley S, Bowler C, Inzé D, D’Halluin K, Botterman J (1993) Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol 103(4):1155–1163CrossRefGoogle Scholar
  40. 40.
    Abreu IA, Hearn A, An H, Nick HS, Silverman DN, Cabelli DE (2008) The kinetic mechanism of manganese-containing superoxide dismutase from Deinococcus radiodurans: a specialized enzyme for the elimination of high superoxide concentrations. Biochemistry 47:2350–2356CrossRefGoogle Scholar
  41. 41.
    Søndergaard A, Stahnke L (2002) Growth and aroma production by Staphylococcus xylosus, S. carnosus and S. equorum—a comparative study in model systems. Int J Food Microbiol 75(1–2):99–109CrossRefGoogle Scholar
  42. 42.
    Chan C, Wilbanks C, Makhatadze G, Wong K (2012) Electrostatic contribution of surface charge residues to the stability of a thermophilic protein: benchmarking experimental and predicted pKa values. PLoS One 7(1):e30296. doi: 10.1371/journal.pone.0030296 CrossRefGoogle Scholar
  43. 43.
    Horovitz A, Serrano L, Avron B, Bycroft M, Fersht AR (1990) Strength and co-operativity of contributions of surface salt bridges to protein stability. J Mol Biol 216(4):1031–1044CrossRefGoogle Scholar
  44. 44.
    Sancho J, Serrano L, Fersht AR (1992) Histidine residues at the N- and C-termini of. alpha.-helixes: perturbed pKas and protein stability. Biochemistry 31(8):2253–2258. doi: 10.1021/bi00123a006 CrossRefGoogle Scholar
  45. 45.
    Sheng Y, Stich TA, Barnese K, Gralla EB, Cascio D, Britt RD, Cabelli DE, Valentine JS (2011) Comparison of two yeast MnSODs: mitochondrial Saccharomyces cerevisiae versus cytosolic Candida albicans. J Am Chem Soc 133:20878–20889CrossRefGoogle Scholar
  46. 46.
    Sheng Y, Durazo A, Schumacher M, Gralla EB, Cascio D, Cabelli DE, Valentine JS (2013) Tetramerization reinforces the dimer interface of MnSOD. PLoS One 8(5):e62446. doi: 10.1371/journal.pone.0062446 CrossRefGoogle Scholar
  47. 47.
    Lin C-T, Lin M-T, Chen Y-T, Shaw J-F (1995) Subunit interaction enhances enzyme activity and stability of sweet potato cytosolic Cu/Zn-superoxide dismutase purified by a His-tagged recombinant protein method. Plant Mol Biol 28(2):303–311CrossRefGoogle Scholar
  48. 48.
    Whittaker MM, Whittaker JW (1998) A glutamate bridge is essential for dimer stability and metal selectivity in manganese superoxide dismutase. J Biol Chem 273(35):22188–22193. doi: 10.1074/jbc.273.35.22188 CrossRefGoogle Scholar
  49. 49.
    Edwards RA, Whittaker MM, Whittaker JW, Baker EN, Jameson GB (2001) Removing a hydrogen bond in the dimer interface of Escherichia coli manganese superoxide dismutase alters structure and reactivity. Biochemistry 40(15):4622–4632. doi: 10.1021/bi002403h CrossRefGoogle Scholar
  50. 50.
    Trinh CH, Hunter T, Stewart EE, Phillips SEV, Hunter GJ (2008) Purification, crystallization and X-ray structures of the two manganese superoxide dismutases from Caenorhabditis elegans. Acta Crystallogr F 64(12):1110–1114. doi: 10.1107/S1744309108037056 CrossRefGoogle Scholar
  51. 51.
    Borgstahl GEO, Parge HE, Hickey MJ, Johnson MJ, Boissinot M, Hallewell RA, Lepock JR, Cabelli DE, Tainer JA (1996) Human mitochondrial manganese superoxide dismutase polymorphic variant Ile58Thr reduces activity by destabilizing the tetrameric interface. Biochemistry 35(14):4287–4297. doi: 10.1021/bi951892w CrossRefGoogle Scholar
  52. 52.
    Desmet J, Joniau M, Hv Dael (1992) The effect of metal ion binding on protein stability. In: Tweel WJJvd, Harder A, Buitelaar RM (eds) Stability and stabilization of enzymes. Elsevier Science Publisher BV, Maastricht, pp 299–308Google Scholar
  53. 53.
    Whittaker JW (2003) The irony of manganese superoxide dismutase. Biochem Soc Trans 31(6):1318–1321CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Debbie S. Retnoningrum
    • 1
  • Anis Puji Rahayu
    • 1
  • Dina Mulyanti
    • 1
  • Astrid Dita
    • 1
  • Oliver Valerius
    • 2
  • Wangsa T. Ismaya
    • 3
  1. 1.Laboratory of Pharmaceutical Biotechnology, School of PharmacyBandung Institute of TechnologyBandungIndonesia
  2. 2.Institute for Microbiology and GeneticsGeorg-August-UniversityGöttingenGermany
  3. 3.Dexa Laboratories of Biomolecular SciencesKawasan Industri Jababeka IICikarangIndonesia

Personalised recommendations