Skip to main content
Log in

Alpha-Synuclein Fibrils Interact with Dopamine Reducing its Cytotoxicity on PC12 Cells

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Aggregated alpha-synuclein (α-SYN) is the major component of Lewy bodies and Lewy neurites, two of the pathological hallmarks of Parkinson’s disease (PD). Aggregation of α-SYN leads to toxic species involved in the degeneration of dopaminergic neurons in the midbrain. Different studies suggest a strong association between the presence of dopamine (DA) and the cell specific degeneration caused by α-SYN aggregates in PD. Despite extensive studies on the effect of DA on α-SYN fibrillation, it remains unclear how the simultaneous presence of DA and α-SYN influences the degeneration of dopaminergic neurons. In this study we show that separate treatments with specific doses of DA or early stage α-SYN aggregates (ESAA) are both cytotoxic to PC12 cells. Surprisingly, simultaneous treatment of cells with DA and ESAA significantly decreased this toxicity. This cytotoxicity was further reduced by the presence of heavier particles of α-SYN aggregates with more fibrillogenic characteristics. Spectrometric analysis revealed that α-SYN fibrils interact with DA even after the sample was dialyzed for 48 h, suggesting a strong interaction. Interestingly, digestion of unprotected N- and C-α-SYN-fibril terminals by proteinase K did not affect this interaction. Our results suggest that fibrillar forms of α-SYN with localized expanded active surfaces may interact with DA and moderate its cytotoxicity. Thus, highlighting the importance of fibrillar proteins in developing clinical approaches for amyloid diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AFM:

Atomic Force Microscopy

α-SYN:

α-Synuclein

CD:

Circular Dichroism

DA:

Dopamine

DAQ:

Dopamine quinone

ESAA:

Early Stages α-SYN Aggregates

FTIR:

Fourier Transform infrared

MTT:

3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide

OD:

Optical Density

PD:

Parkinson’s Disease

PK:

Proteinase K

PI:

Propidium Iodide

ROS:

Reactive Oxygen Species

SNpc:

Substantia Nigra pars compacta

ThT:

Thioflavin T

References

  1. Lees AJ, Hardy J, Revesz T (2009) Parkinson’s disease. Lancet 373(9680):2055–2066

    Article  CAS  Google Scholar 

  2. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in lewy bodies. Nature 388(6645):839–840

    Article  CAS  Google Scholar 

  3. Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300(5618):486–489

    Article  CAS  Google Scholar 

  4. Volles MJ, Lee SJ, Rochet JC, Shtilerman MD, Ding TT, Kessler JC, Lansbury PT Jr (2001) Vesicle permeabilization by protofibrillar alpha-synuclein: implications for the pathogenesis and treatment of Parkinson’s disease. Biochemistry 40(26):7812–7819

    Article  CAS  Google Scholar 

  5. Gosavi N, Lee HJ, Lee JS, Patel S, Lee SJ (2002) Golgi fragmentation occurs in the cells with prefibrillar alpha-synuclein aggregates and precedes the formation of fibrillar inclusion. J Biol Chem 277(50):48984–48992

    Article  CAS  Google Scholar 

  6. Chinta SJ, Mallajosyula JK, Rane A, Andersen JK (2010) Mitochondrial alpha-synuclein accumulation impairs complex i function in dopaminergic neurons and results in increased mitophagy in vivo. Neurosci Lett 486(3):235–239

    Article  CAS  Google Scholar 

  7. Freundt EC, Maynard N, Clancy EK, Roy S, Bousset L, Sourigues Y, Covert M, Melki R, Kirkegaard K, Brahic M (2012) Neuron-to-neuron transmission of alpha-synuclein fibrils through axonal transport. Ann Neurol 72(4):517–524

    Article  CAS  Google Scholar 

  8. Jang A, Lee HJ, Suk JE, Jung JW, Kim KP, Lee SJ (2010) Non-classical exocytosis of alpha-synuclein is sensitive to folding states and promoted under stress conditions. J Neurochem 113(5):1263–1274

    CAS  Google Scholar 

  9. Desplats P, Lee HJ, Bae EJ, Patrick C, Rockenstein E, Crews L, Spencer B, Masliah E, Lee SJ (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci USA 106(31):13010–13015

    Article  CAS  Google Scholar 

  10. Braak H, Rub U, Gai WP, Del Tredici K (2003) Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm 110(5):517–536

    Article  CAS  Google Scholar 

  11. Pan-Montojo F, Schwarz M, Winkler C, Arnhold M, O’Sullivan GA, Pal A, Said J, Marsico G, Verbavatz JM, Rodrigo-Angulo M, Gille G, Funk RH, Reichmann H (2012) Environmental toxins trigger pd-like progression via increased alpha-synuclein release from enteric neurons in mice. Sci Rep 2:898

    Article  Google Scholar 

  12. Nemani VM, Lu W, Berge V, Nakamura K, Onoa B, Lee MK, Chaudhry FA, Nicoll RA, Edwards RH (2010) Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65(1):66–79

    Article  CAS  Google Scholar 

  13. Yavich L, Tanila H, Vepsalainen S, Jakala P (2004) Role of alpha-synuclein in presynaptic dopamine recruitment. J Neurosci 24(49):11165–11170

    Article  CAS  Google Scholar 

  14. Lotharius J, Brundin P (2002) Impaired dopamine storage resulting from alpha-synuclein mutations may contribute to the pathogenesis of Parkinson’s disease. Hum Mol Genet 11(20):2395–2407

    Article  CAS  Google Scholar 

  15. Taylor TN, Alter SP, Wang M, Goldstein DS, Miller GW (2014) Reduced vesicular storage of catecholamines causes progressive degeneration in the locus ceruleus. Neuropharmacology 76 Pt A:97–105

    Article  Google Scholar 

  16. Asanuma M, Miyazaki I, Ogawa N (2003) Dopamine- or l-dopa-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease. Neurotox Res 5(3):165–176

    Article  Google Scholar 

  17. Junn E, Mouradian MM (2002) Human alpha-synuclein over-expression increases intracellular reactive oxygen species levels and susceptibility to dopamine. Neurosci Lett 320(3):146–150

    Article  CAS  Google Scholar 

  18. Maker HS, Weiss C, Silides DJ, Cohen G (1981) Coupling of dopamine oxidation (monoamine oxidase activity) to glutathione oxidation via the generation of hydrogen peroxide in rat brain homogenates. J Neurochem 36(2):589–593

    Article  CAS  Google Scholar 

  19. Hastings TG (2009) The role of dopamine oxidation in mitochondrial dysfunction: implications for Parkinson’s disease. J Bioenerg Biomembr 41(6):469–472

    Article  CAS  Google Scholar 

  20. Miyazaki I, Asanuma M (2009) Approaches to prevent dopamine quinone-induced neurotoxicity. Neurochem Res 34(4):698–706

    Article  CAS  Google Scholar 

  21. LaVoie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, Selkoe DJ (2005) Dopamine covalently modifies and functionally inactivates parkin. Nat Med 11(11):1214–1221

    Article  CAS  Google Scholar 

  22. Emdadul Haque M, Asanuma M, Higashi Y, Miyazaki I, Tanaka K, Ogawa N (2003) Apoptosis-inducing neurotoxicity of dopamine and its metabolites via reactive quinone generation in neuroblastoma cells. Biochim Biophys Acta 1619(1):39–52

    Article  CAS  Google Scholar 

  23. Conway KA, Rochet JC, Bieganski RM, Lansbury PT Jr (2001) Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science 294(5545):1346–1349

    Article  CAS  Google Scholar 

  24. Leong SL, Pham CL, Galatis D, Fodero-Tavoletti MT, Perez K, Hill AF, Masters CL, Ali FE, Barnham KJ, Cappai R (2009) Formation of dopamine-mediated alpha-synuclein-soluble oligomers requires methionine oxidation. Free Radic Biol Med 46(10):1328–1337

    Article  CAS  Google Scholar 

  25. Mazzulli JR, Armakola M, Dumoulin M, Parastatidis I, Ischiropoulos H (2007) Cellular oligomerization of alpha-synuclein is determined by the interaction of oxidized catechols with a c-terminal sequence. J Biol Chem 282(43):31621–31630

    Article  CAS  Google Scholar 

  26. Fink AL (2006) The aggregation and fibrillation of α-synuclein. Acc Chem Res 39(9):628–634

    Article  CAS  Google Scholar 

  27. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  CAS  Google Scholar 

  28. Kaylor J, Bodner N, Edridge S, Yamin G, Hong DP, Fink AL (2005) Characterization of oligomeric intermediates in alpha-synuclein fibrillation: fret studies of y125w/y133f/y136f alpha-synuclein. J Mol Biol 353(2):357–372

    Article  CAS  Google Scholar 

  29. Jana S, Sinha M, Chanda D, Roy T, Banerjee K, Munshi S, Patro BS (1812) Chakrabarti S (2011) Mitochondrial dysfunction mediated by quinone oxidation products of dopamine: implications in dopamine cytotoxicity and pathogenesis of Parkinson’s disease. Biochim Biophys Acta 6:663–673

    Google Scholar 

  30. Berman SB, Hastings TG (1999) Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease. J Neurochem 73(3):1127–1137

    Article  CAS  Google Scholar 

  31. Luth ES, Stavrovskaya IG, Bartels T, Kristal BS, Selkoe DJ (2014) Soluble, prefibrillar α-synuclein oligomers promote complex i-dependent, Ca2+-induced mitochondrial dysfunction. Journal of Biological Chemistry:jbc. M113:545749

    Google Scholar 

  32. Silva BA, Einarsdottir O, Fink AL, Uversky VN (2013) Biophysical characterization of alpha-synuclein and rotenone interaction. Biomolecules 3(3):703–732

    Article  Google Scholar 

  33. Halliwell B, Gutteridge JMC (1985) Oxygen radicals and the nervous system. Trends Neurosci 8:22–26

    Article  CAS  Google Scholar 

  34. Storch A, Blessing H, Bareiss M, Jankowski S, Ling ZD, Carvey P, Schwarz J (2000) Catechol-o-methyltransferase inhibition attenuates levodopa toxicity in mesencephalic dopamine neurons. Mol Pharmacol 57(3):589–594

    CAS  Google Scholar 

  35. Schubert D, Behl C, Lesley R, Brack A, Dargusch R, Sagara Y, Kimura H (1995) Amyloid peptides are toxic via a common oxidative mechanism. Proc Natl Acad Sci USA 92(6):1989–1993

    Article  CAS  Google Scholar 

  36. Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG (2005) Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 280(17):17294–17300

    Article  CAS  Google Scholar 

  37. Giehm L, Svergun DI, Otzen DE, Vestergaard B (2011) Low-resolution structure of a vesicle disrupting α-synuclein oligomer that accumulates during fibrillation. Proc Natl Acad Sci USA 108(8):3246–3251

    Article  CAS  Google Scholar 

  38. Volles MJ, Lansbury PT Jr (2003) Zeroing in on the pathogenic form of alpha-synuclein and its mechanism of neurotoxicity in Parkinson’s disease. Biochemistry 42(26):7871–7878

    Article  CAS  Google Scholar 

  39. Danzer KM, Haasen D, Karow AR, Moussaud S, Habeck M, Giese A, Kretzschmar H, Hengerer B, Kostka M (2007) Different species of alpha-synuclein oligomers induce calcium influx and seeding. J Neurosci 27(34):9220–9232

    Article  CAS  Google Scholar 

  40. Cappai RL, Leck SL, Tew DJ, Williamson NA, Smith DP, Galatis D, Sharples RA, Curtain CC, Ali FE, Cherny RA, Culvenor JG, Bottomley SP, Masters CL, Barnham KJ, Hill AF (2005) Dopamine promotes alpha-synuclein aggregation into sds-resistant soluble oligomers via a distinct folding pathway. FASEB J 19:1377–1379

    CAS  Google Scholar 

  41. Norris EH, Giasson BI, Hodara R, Xu S, Trojanowski JQ, Ischiropoulos H, Lee VM (2005) Reversible inhibition of alpha-synuclein fibrillization by dopaminochrome-mediated conformational alterations. J Biol Chem 280(22):21212–21219

    Article  CAS  Google Scholar 

  42. Pham CL, Cappai R (2013) The interplay between lipids and dopamine on alpha-synuclein oligomerization and membrane binding. Biosci Rep 33(5):807–814

    Article  CAS  Google Scholar 

  43. Morshedi D, Mohammadi Z, Akbar Boojar MM, Aliakbari F (2013) Using protein nanofibrils to remove azo dyes from aqueous solution by the coagulation process. Coll Surf B Biointerfaces 112:245–254

    Article  CAS  Google Scholar 

  44. Jones SR, Gainetdinov RR, Jaber M, Giros B, Wightman RM, Caron MG (1998) Profound neuronal plasticity in response to inactivation of the dopamine transporter. Proc Natl Acad Sci USA 95(7):4029–4034

    Article  CAS  Google Scholar 

  45. Chen L, Ding Y, Cagniard B, Van Laar AD, Mortimer A, Chi W, Hastings TG, Kang UJ, Zhuang X (2008) Unregulated cytosolic dopamine causes neurodegeneration associated with oxidative stress in mice. J Neurosci 28(2):425–433

    Article  Google Scholar 

  46. Cyr M, Beaulieu JM, Laakso A, Sotnikova TD, Yao WD, Bohn LM, Gainetdinov RR, Caron MG (2003) Sustained elevation of extracellular dopamine causes motor dysfunction and selective degeneration of striatal gabaergic neurons. Proc Natl Acad Sci USA 100(19):11035–11040

    Article  CAS  Google Scholar 

  47. Hastings TG, Lewis DA, Zigmond MJ (1996) Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections. Proc Natl Acad Sci USA 93(5):1956–1961

    Article  CAS  Google Scholar 

  48. Koshimura K, Tanaka J, Murakami Y, Kato Y (2000) Effects of dopamine and l-dopa on survival of pc12 cells. J Neurosci Res 62(1):112–119

    Article  CAS  Google Scholar 

  49. Zhou W, Gallagher A, Hong DP, Long C, Fink AL, Uversky VN (2009) At low concentrations, 3,4-dihydroxyphenylacetic acid (dopac) binds non-covalently to alpha-synuclein and prevents its fibrillation. J Mol Biol 388(3):597–610

    Article  CAS  Google Scholar 

  50. Corvaglia S, Sanavio B, Hong Enriquez RP, Sorce B, Bosco A, Scaini D, Sabella S, Pompa PP, Scoles G, Casalis L (2014) Atomic force microscopy based nanoassay: a new method to study alpha-synuclein-dopamine bioaffinity interactions. Sci Rep 4:5366

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Genetic Engineering and Biotechnology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dina Morshedi.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10930_2015_9625_MOESM1_ESM.pdf

Study of ASN fibrillation. Kinetic of the fibrillation monitored by (a) changes in ThT fluorescence intensity or (b) Congo red absorbance. The inset indicates maximum intensity of fluorescence. (c) Far-UV CD spectra of ASN obtained after 0-hours and 48-hours. (d) Fluorescence images of ASN fibrils dyed with ThT (PDF 214 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalife, M., Morshedi, D., Aliakbari, F. et al. Alpha-Synuclein Fibrils Interact with Dopamine Reducing its Cytotoxicity on PC12 Cells. Protein J 34, 291–303 (2015). https://doi.org/10.1007/s10930-015-9625-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-015-9625-y

Keywords

Navigation