The Protein Journal

, Volume 34, Issue 5, pp 315–328 | Cite as

Distribution of Alkaline Phosphatase, Osteopontin, RANK Ligand and Osteoprotegerin in Calcified Human Carotid Atheroma

  • Catherine L. Higgins
  • Salim Isbilir
  • Pamela Basto
  • Iou Yih Chen
  • Muthiah Vaduganathan
  • Periyanan Vaduganathan
  • Michael J. Reardon
  • Gerald Lawrie
  • Leif Peterson
  • Joel D. Morrisett


Ectopic vascular calcification is a significant component of atherosclerotic disease. Osteopontin (OPN), Osteoprotegerin (OPG), Receptor Activator of NFκB Ligand (RANKL), and alkaline phosphatase (ALP) are each thought to play central roles in the calcification or demineralization of atherosclerotic lesions. Abnormalities in the balance of these proteins may lead to perturbations in bone remodeling and arterial calcification. The purpose of this study was to measure the distribution of these proteins in human carotid lesions and to elucidate possible mechanism(s) whereby they control the deposition or depletion of arterial calcification. Thirty-three patients who had undergone carotid endarterectomy (CEA) within the previous 18 months and 11 control patients were enrolled. CEA specimens were analyzed by EBCT for calcification content in terms of Agatston (AGAT) and Volume scores. CEA specimens were then cut into 5 mm segments which were homogenized and extracted. Extracts were analyzed for tissue levels of calcium, phosphorus, ALP, OPN, RANKL, and OPG. Fasting blood samples were analyzed for the same components. In CEA tissue segments, the calcification levels (CHA AGAT) were inversely associated with the levels of OPG (r = −0.432/−0.579, p < 0.05) and positively associated with the levels of RANKL (r = 0.332/0.415, p < 0.05). In turn, the tissue levels of OPG were associated with homologous serum levels of OPG (r = 0.820/0.389, p < 0.001), and the tissue levels of RANKL were associated with the serum levels of homologous RANKL (r = 0.739/0.666, p < 0.0001). This study suggests that serum levels of OPG and RANKL may be useful biomarkers for estimating the degree of calcification in carotid atherosclerotic lesions.


Atherosclerosis Calcification Osteoprotegerin RANKL Osteopontin 





Alkaline phosphatase


Carotid endarterectomy


Calcium hydroxyapatite


Electron beam computed tomography


Endothelial cells






Receptor activator of NFκB ligand


Soluble RANKL


Vascular smooth muscle cells



The authors acknowledge the contributions of Seth Marvel, Darlene Simoni, Susan Creager, Regina Williams, Raeshmma Rajesh, and Yachuan Cai.

Sources of Funding

This work was supported in part by Grants HL07812 and HL63090 from the National Heart, Lung and Blood Institute (TTGA).

Compliance with Ethical Standards

Conflict of interest



  1. 1.
    Pohle K, Ropers D, Maffert R, Geitner P, Moshage W, Regenfus M, Kusus M, Daniel WG, Achenbach S (2003) Coronary calcifications in young patients with first, unheralded myocardial infarction: a risk factor matched analysis by electron beam tomography. Heart 89:625–628CrossRefGoogle Scholar
  2. 2.
    Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT (2001) Impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 103(8):1051–1056CrossRefGoogle Scholar
  3. 3.
    Shaalan WE, Cheng H, Gewertz B, McKinsey JF, Schwartz LB, Katz D, Cao D, Desai T, Glagov S, Bassiouny HS (2004) Degree of carotid plaque calcification in relation to symptomatic outcome and plaque inflammation. J Vasc Surg 40:262–269CrossRefGoogle Scholar
  4. 4.
    Suzuki M, Ozaki Y, Komura S, Nakanashi A (2007) Intracranial carotid calcification on CT images as an indicator of atheromatous plaque: analysis of high resolution CTA images using a 64- multidetector scanner. Radiat Med 25:378–385CrossRefGoogle Scholar
  5. 5.
    Sigrist MK, Taal MW, Bungay P, McIntyre CW (2007) Progressive vascular calcification over 2 years is associated with arterial stiffening and increased mortality in patients with stages 4 and 5 chronic kidney disease. Clin J Am Soc Nephrol 2:1241–1248CrossRefGoogle Scholar
  6. 6.
    Toussaint ND, Lau KK, Strauss BJ, Polkinghorne KR, Kerr PG (2008) Associations between vascular calcification, arterial stiffness, and bone mineral density in chronic kidney disease. Nephrol Dial Transpl 23:586–593CrossRefGoogle Scholar
  7. 7.
    Parikh NI, Hwang SJ, Larson MG, Cupples LA, Fox CS, Manders ES, Murabito JM, Massaro JM, Hoffmann U, O’Donnell CJ (2007) Parental occurrence of premature cardiovascular disease predicts increased coronary artery and abdominal aortic calcification in the Framingham Offspring and Third Generation cohorts. Circulation 116:1473–1481CrossRefGoogle Scholar
  8. 8.
    Terry JG, Carr JJ, Kouba EO, Davis DH, Menon L, Bender K, Chandler ET, Morgan T, Crouse JR (2007) Effect of simvastatin (80 mg) on coronary and abdominal aortic arterial calcium (from the coronary artery calcification treatment with Zocor [CATZ] study). Am J Cardiol 99:1714–1717CrossRefGoogle Scholar
  9. 9.
    Dhore CR, Cleutjens JPM, Lutgens E, Cleutjens KBJM, Geusens PPM, Kitslaar PJEHM, Tordoir JHM, Spronk HMH, Vermeer C, Daemen MJAP (2001) Differential expression of bone matrix regulatory proteins in human atherosclerotic plaques. Arterioscler Thromb Vasc Biol 21:1998–2003CrossRefGoogle Scholar
  10. 10.
    Ossareh S (2011) Vascular calcification in chronic kidney disease. Iran J Kidney Dis 5:285–299Google Scholar
  11. 11.
    Doherty TM, Fitzpatrick LA, Shaheen A, Rajavashisth TB, Detrano RC (2004) Genetic Determinants of arterial calcification associated with atherosclerosis. Mayo Clin Proc 79:197–210CrossRefGoogle Scholar
  12. 12.
    Abedin M, Tintut Demer LL (2004) Vascular calcification: mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol 24:1–10CrossRefGoogle Scholar
  13. 13.
    Vattikuti R, Towler DA (2004) Osteogenic regulation of vascular calcification: an early perspective. Am J Physiol Endocrinol Metab 286:E686–E696CrossRefGoogle Scholar
  14. 14.
    Proudfoot D, Shanahan CM (2001) Biology of calcification in vascular cells: intima versus media. Herz 26:245–251CrossRefGoogle Scholar
  15. 15.
    Moe SM (2006) Vascular calcification: hardening of the evidence. Kidney Int 70:1535–1537CrossRefGoogle Scholar
  16. 16.
    Giachelli CM (2004) Vascular calcification mechanisms. J Am Soc Nephrol 15:2959–2964CrossRefGoogle Scholar
  17. 17.
    Doherty TM, Asotra K, Fitzpatrick LA, Qiao J-H, Wilkin DJ, Detrano RC, Dunstan CR, Shah PK, Rajavashisth TB (2003) Calcification in atherosclerosis: bone biology chronic inflammation at the arterial crossroads. Proc Nat Acad Sci USA 100:11201–11206CrossRefGoogle Scholar
  18. 18.
    Tyson KL, Reynolds JL, McNair R, Zhang Q, Weissberg PL, Shanahan CM (2003) Osteo/chondrocytic transcription factors and their target genes exhibit distinct patterns of expression in human arterial calcification. Arterioscler Throm Vasc Biol 23:489–494CrossRefGoogle Scholar
  19. 19.
    Abedin M, Tintut Y, Demer LL (2004) Vascular calcification: mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol 24:1161–1170CrossRefGoogle Scholar
  20. 20.
    Otto CM, Kuusisto J, Reichenbach DD, Gown AM, O’Brien KD (1994) Characterization of the early lesion of degenerative valvular aortic stenosis: histological and immunohostochemical studies. Circulation 90:844–853CrossRefGoogle Scholar
  21. 21.
    Rajamannan NM, Subramaniam M, Rickard D, Stock SR, Donovan J, Springett M, Orzulak T, Fulleron DA, Tajik AJ, Bobow RO, Spelsberg T (2003) Human aortic valve calcification is associated with an osteoblast phenotype. Circulation 107:2181–2184CrossRefGoogle Scholar
  22. 22.
    Moe SM, Chen NX (2003) Caliphylaxis and vascular calcification: a continuum of extraskeletal osteogenesis. Pediatr Nephrol 18:969–975CrossRefGoogle Scholar
  23. 23.
    Ducy P, Zhang R, Geoffrey V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell 89(5):747–754CrossRefGoogle Scholar
  24. 24.
    Tintut Y, Alfonso Z, Saini T, Radcliff K, Watson K, Bostrom K, Demer LL (2003) Multilineage potential of cells from the artery wall. Circulation 108(20):2505–2510CrossRefGoogle Scholar
  25. 25.
    Czupalla C, Mansukoski H, Reidl T, Thiel D, Krause E, Hoflack B (2006) Proteomic analysis of lysozomal acid hydrolases secreted by osteoclasts. Mol Cell Proteomics 5:134–143CrossRefGoogle Scholar
  26. 26.
    Brandao-Burch A, Utting JC, Orriss IR, Arnett TR (2005) Acidosis inhibits bone formation by osteoblasts in vitro by preventing mineralization. Calcified Tissue Int 77(3):1–20CrossRefGoogle Scholar
  27. 27.
    Susa M, Luong-Nguyen N-H, Cappellen D, Zamurovic N, Gamse R (2004) Human primary osteoclasts: in vitro generation and application as pharmacological and clinical assay. J Trans Med 2(1):6CrossRefGoogle Scholar
  28. 28.
    Barnes GL, Javed A, Waller SM, Kamal MH, Hebert KE, Hassan MQ, Bellahcene A, van Wijnen AJ, Young MF, Lian JB, Stein GS, Gerstenfeld LC (2003) Osteoblast- related transcription factors Runx2 (Cbfa1/AML3) and MSX2 mediate the expression of bone sialoprotein in human metastatic breast cancer cells. Cancer Res 63:2631–2637Google Scholar
  29. 29.
    Kajiya H, Okamoto F, Fukushima H, Okabe K (2003) Calcitonin inhibits proton extrusion in resorbing rat osteoclasts via protein kinase A. Eur J Physiol 445(6):651–658Google Scholar
  30. 30.
    Doehring LC, Heeger C, Aherrahrou Z, Kaczmarek PM, Erdmann J, Schunkert H, Ehlers EM (2010) Am J Pathol 177(1):473–480CrossRefGoogle Scholar
  31. 31.
    Leali D, Moroni E, Bussolino F, Presta M (2007) Osteopontin overexpresion inhibits in vitro re-endothelization via integrin engagement. J Biol Chem 282:19676–19684CrossRefGoogle Scholar
  32. 32.
    Kaartinen MT, Murshed M, Karsenty G, McKee MD (2007) Osteopontin upregulation and polymerization by transglutaminase 2 in calcified arteries of matrix Gla protein-deficient mice. J Histochem Cytochem 55:375–386CrossRefGoogle Scholar
  33. 33.
    Scatena M, Liam L, Giachelli CM (2007) Osteopontin: a multifunctional molecule regulating chronic inflammation and vascular disease. Arterioscler Thromb Vasc Biol 27:2302–2309CrossRefGoogle Scholar
  34. 34.
    Orita Y, Yamamoto H, Kohno N, Sugihara M, Honda H, Kawamata S, Mito S, Soe NN, Yoshizumi M (2007) Role of osteoprotegerin in arterial calcification: development of a new animal model. Arterioscler Thromb Vasc Biol 27:2058–2064CrossRefGoogle Scholar
  35. 35.
    Bennett BJ, Scatena M, Kirk EA, Rattazzi M, Varon RM, Averill M, Schwartz SM, Giachelli CM, Rosenfeld ME (2006) Osteopontin inactivation accelerates advanced atherosclerotic lesion progression and calcification in older apoE−/− mice. Arterioscler Thromb Vasc Biol 26:2117–2124CrossRefGoogle Scholar
  36. 36.
    Valverde P, Tu Q, Chen J (2005) BSP and RANKL induce osteoclastogenesis and bone resorption synergistically. J Bone Miner Res 20:1669–1679CrossRefGoogle Scholar
  37. 37.
    Pencak P, Czerwieńska B, Ficek R, Wyskida K, Kujawa-Szewieczek A, Olszanecka-Glinianowicz M, Więcek A, Chudek J (2013) Calcification of coronary arteries and abdominal aorta in relation to traditional and novel risk factors of atherosclerosis in hemodialysis patients. BMC Nephrol 14:10. doi: 10.1186/1471-2369-14-10 CrossRefGoogle Scholar
  38. 38.
    Pennisi P, Signorelli SS, Riccobene S, Celotta G, Di Pino L, La Malfa T, Fiore CE (2004) Low bone density and abnormal bone turnover in patients with atherosclerosis of peripheral vessels. Osteoporos Int 15:389–395CrossRefGoogle Scholar
  39. 39.
    O’Sullivan EP, Ashley DT, Davenport C, Kelly J, Devlin N, Crowley R, Leahy AL, Kelly CJ, Agha A, Thompson CJ, O’Gorman DJ, Fitzgerald P, Smith D (2010) Osteoprotegerin is higher in peripheral arterial disease regardless of glycaemic status. Thromb Res 126:e423–e427CrossRefGoogle Scholar
  40. 40.
    Kadoglou NP, Gerasimidis T, Golemati S, Kapelouzou A, Karayannacos PE, Liapis CD (2008) The relationship between serum levels of vascular calcification inhibitors and carotid plaque vulnerability. J Vasc Surg 47:55–62CrossRefGoogle Scholar
  41. 41.
    Kadoglou NP, Sailer N, Moumtzouoglou A, Kapelouzou A, Gerasimidis T, Liapis CD (2010) Aggressive lipid-lowering is more effective than moderate lipid-lowering treatment in carotid plaque stabilization. J Vasc Surg 51:114–121CrossRefGoogle Scholar
  42. 42.
    Tousoulis D, Siasos G, Maniatis K, Oikonomou E, Kioufis S, Zaromitidou M, Paraskevopoulos T, Michalea S, Kollia C, Miliou A, Kokkou E, Papavassiliou AG, Stefanadis C (2013) Serum osteoprotegerin and osteopontin levels are associated with arterial stiffness and the presence and severity of coronary artery disease. Int J Cardiol 167(5):1924–1928CrossRefGoogle Scholar
  43. 43.
    Ishiyama M, Suzuki E, Katsuda J, Murase H, Tajima Y, Horikawa Y, Goto S, Fujita T, Takeda J (2009) Associations of coronary artery calcification and carotid intima-media thickness with plasma concentrations of vascular calcification inhibitors in type 2 diabetic patients. Diabetes Res Clin Pract 85:189–196CrossRefGoogle Scholar
  44. 44.
    Schoppet M, Al-Fakhri N, Franke FE, Katz N, Barth PJ, Maisch B, Preissner KT, Hofbauer LC (2004) Localization of osteoprotegerin, tumor necrosis factor-related apoptosis-inducing ligand, and receptor activator of nuclear factor-κB ligand in Mönckeberg’s sclerosis and atherosclerosis. J Clin Endocrinol Metab 89:4104–4112CrossRefGoogle Scholar
  45. 45.
    Osorio A, Ortega E, Torres JM, Sanchez P, Ruiz-Requena E (2011) Mineral-bone metabolism markers in young hemodialysis patients. Clin Biochem 44:1425–1428CrossRefGoogle Scholar
  46. 46.
    Nicholls SJ, Tuzcu EM, Wolski K, Sipahi I, Schoenhagen P, Crowe T, Kapadia SR, Hazen SL, Nissen SE (2007) Coronary artery calcification and changes in atheroma burden in response to established medical therapies. J Am Coll Cardiol 49:263–270CrossRefGoogle Scholar
  47. 47.
    Silay YS, Altundag K, Altundag O, Atik MA, Ozen M (2005) Bisphosphonates may inhibit development of atherosclerosis formation through its bactericidal effect on nonbacteria. Med Hypotheses 64:1239–1240CrossRefGoogle Scholar
  48. 48.
    Price PA, Faus SA, Williamson MK (2001) Bisphosphonates alendronate and ibandronate inhibit artery calcification at doses comparable to those that inhibit bone resorption. Arterioscler Thromb Vasc Biol 21:817–824CrossRefGoogle Scholar
  49. 49.
    Rajamannan NM, Subramaniam M, Caira F, Stock SR, Spelsberg TC (2005) Atorvaststin inhibits hypercholesterolemia- induced calcification in the aortic valves via the Lrp5 receptor pathway. Circulation 112:229–234Google Scholar
  50. 50.
    Collin-Osdoby P (2004) Regulation of vascular calcification by osteoclast regulatory factors RANKL and osteoprotegerin. Circ Res 95:1046–1052CrossRefGoogle Scholar
  51. 51.
    Papadopouli AE, Klonaris CN, Theocharis SE (2008) Role of OPG/RANKL/RANK axis on the vasculature. Histol Histopathol 23:497–506Google Scholar
  52. 52.
    Tsirpanlis G (2007) Is inflammation the link between atherosclerosis and vascular calcification in chronic kidney disease? Blood Purif 25:179–182CrossRefGoogle Scholar
  53. 53.
    Montecucco F, Steffens S, Mach F (2007) The immune response is involved in atherosclerotic plaque calcification: could the RANKL/RANK’OPG system be a marker of plaque instability? Clin Dev Immunol 2007:75805. doi: 10.1155/2007/75805 CrossRefGoogle Scholar
  54. 54.
    Hwang JJ, Wei J, Abbara S, Grinspoon SK, Lo J (2012) Receptor activator of nuclear factor-κB ligand (RANKL) and its relationship to coronary atherosclerosis in HIV patients. J Acquir Immune Defic Syndr 61:359–363CrossRefGoogle Scholar
  55. 55.
    Venuraju SM, Yerramasu A, Corder R, Lahiri A (2010) Osteoprotegerin as a predictor of coronary artery disease and cardiovascular mortality and morbidity. J Am Coll Cardiol 55:2049–2061CrossRefGoogle Scholar
  56. 56.
    Van Campenhout A, Golledge J (2009) Osteoprotegerin, vascular calcification and atherosclerosis. Atherosclerosis 204:321–329CrossRefGoogle Scholar
  57. 57.
    Narisawa S, Harmey D, Yadav MC, O’Neill WC, Hoylaerts MF, Millan JL (2007) Novel inhibitors of alkaline phosphatase suppress vascular smooth muscle cell calcification. J Bone Miner Res 22:1700–1710CrossRefGoogle Scholar
  58. 58.
    Katagi SA, Okuno Y, Mori K, Jono S, Koyama H, Nishizawa Y (2002) Induction of bone-type alkaline phosphatase in human vascular smooth muscle cells: roles of tumor necrosis factor-alpha and oncostatin M derived frommacrophages. Circ Res 91:9–16CrossRefGoogle Scholar
  59. 59.
    Tintut Y, Patel J, Parhami F, Demer LL (2000) Tumor necrosis factor alpha promotes in vitro calcification of vascular cells via the cAMP pathway. Circulation 12:2636–2642CrossRefGoogle Scholar
  60. 60.
    Oldberg A, Franzen A, Heinegard D (1986) Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proc Natl Acad Sci USA 83(23):8819–8823CrossRefGoogle Scholar
  61. 61.
    Fisher LW, Hawkins GR, Tuross N, Termine JD (1987) Purification and partial characterization of small proteoglycans I and II, bone sialoproteins I and II, and osteonectin from the mineral compartment of developing human bone. J Biol Chem 262(20):9702–9708Google Scholar
  62. 62.
    Prince CW, Oosawa T, Butler WT, Tomana M, Bhown AS, Bhown M, Schrohenloher RE (1987) Isolation, characterization, and biosynthesis of a phosphorylated glycoprotein from rat bone. J Biol Chem 262(6):2900–2907Google Scholar
  63. 63.
    Flores ME, Norgård M, Heinegård D, Reinholt FP, Andersson G (1992) RGD-directed attachment of isolated rat osteoclasts to osteopontin, bone sialoprotein, and fibronectin. Exp Cell Res 201(2):526–530CrossRefGoogle Scholar
  64. 64.
    Reinholt FP, Hultenby K, Oldberg A, Heinegård D (1990) Osteopontin-a possible anchor of osteoclasts to bone. Proc Natl Acad Sci USA 87(12):4473–4475CrossRefGoogle Scholar
  65. 65.
    Byon CH, Sun Y, Chen J, Yuan K, Mao X, Heath JM, Anderson PG, Tintut Y, Demer LL, Wang D, Chen Y (2011) Runx2-upregulated receptor activator of nuclear factor κB ligand in calcifying smooth muscle cells promotes migration and osteoclastic differentiation of macrophages. Arterioscler Thromb Vasc Biol 31(6):1387–1396CrossRefGoogle Scholar
  66. 66.
    Choi BG, Vilahur G, Cardoso L, Fritton JC, Ibanez B, Zafar MU, Yadegar D, Speidl WS, Schaffler MB, Fuster V, Badimon JJ (2008) Ovariectomy increases vascular calcification via the OPG/RANKL cytokine signalling pathway. Eur J Clin Invest 38(4):211–217CrossRefGoogle Scholar
  67. 67.
    Morony S, Tintut Y, Zhang Z, Cattley RC, Van G, Dwyer D, Stolina M, Kostenuik PJ, Demer LL (2008) Osteoprotegerin inhibits vascular calcification without affecting atherosclerosis in ldlr(−/−) mice. Circulation 117:411–420CrossRefGoogle Scholar
  68. 68.
    Tseng W, Graham LS, Geng Y, Reddy A, Lu J, Effros RB, Demer L, Tintut Y (2010) PKA-induced receptor activator of NF-kappa B ligand (RANKL) expression in vascular cells mediates osteoclastogenesis but not matrix calcification. J Biol Chem 285(39):29925–29931CrossRefGoogle Scholar
  69. 69.
    Deuell KA, Callegari A, Giachelli CM, Rosenfeld ME, Scatena M (2012) RANKL enhances macrophage paracrine pro-calcific activity in high phosphate-treated smooth muscle cells: dependence on IL-6 and TNF-α. J Vasc Res 49(6):510–521CrossRefGoogle Scholar
  70. 70.
    Mazière C, Louvet L, Gomila C, Kamel S, Massy Z, Mazière JC (2009) Oxidized low density lipoprotein decreases Rankl-induced differentiation of osteoclasts by inhibition of Rankl signaling. J Cell Physiol 221(3):572–578CrossRefGoogle Scholar
  71. 71.
    Adams GJ, Simoni DM, Bordelon CB Jr, Vick GW 3rd, Kimball KT, Insull W Jr, Morrisett JD (2002) Bilateral symmetry of human carotid artery atherosclerosis. Stroke 33(11):2575–2580CrossRefGoogle Scholar
  72. 72.
    Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M, Detrano R (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832CrossRefGoogle Scholar
  73. 73.
    Callister TQ, Cooil B, Raya SP, Lippolis NJ, Russo DJ, Raggi P (1998) Coronary artery disease: improved reproducibility of calcium scoring with an electron beam CT volumetric method. Radiology 208:807–814CrossRefGoogle Scholar
  74. 74.
    Choudhary S, Higgins CL, Chen IY, Reardon M, Lawrie G, Vick GW 3rd, Karmonik C, Via DP, Morrisett JD (2006) Quantitation and localization of matrix metalloproteinases and their inhibitors in human carotid endarterectomy tissues. Arterioscler Thromb Vasc Biol 26(10):2351–2358CrossRefGoogle Scholar
  75. 75.
    Gitelman HJ (1967) o-cresolphthalein complexone reference: a modified uronic acid carbazole reaction. Anal Biochem 4:521–531CrossRefGoogle Scholar
  76. 76.
    Bartlett GR (1959) Phosphorus assay in column chromatography. J Biol Chem 234:466–468Google Scholar
  77. 77.
    Galanti B, Nardiello S, Russo M, Giusti G (1976) A comparative study of the Bessey method and Hausamen method for serum alkaline phosphatase determination. Enzyme 21:364–378Google Scholar
  78. 78.
    Higgins CL, Marvel SA, Morrisett JD (2005) Quantification of Calcification in Atherosclerotic Lesions. Arterioscler Thromb Vasc Biol 25:1567–1576CrossRefGoogle Scholar
  79. 79.
    Shaarawy M, Fathy SA, Mehany NL, Hindy OW (2007) Circulating levels of osteoprotegerin and receptor activator of NFΚB ligand in patients with chronic renal failure. Clin Chem Lab Med 45:1498–1503CrossRefGoogle Scholar
  80. 80.
    Kiechl S, Schett G, Schwaiger J, Seppi K, Eder P, Egger G, Santer P, Mayr A, Xu Q, Willeit J (2007) Soluble receptor activator of nuclear factor-kappa B ligand and risk for cardiovascular disease. Circulation 116(4):385–391CrossRefGoogle Scholar
  81. 81.
    Omland T, Drazner MH, Ueland T, Abedin M, Murphy SA, Aukrust P, DeLemos JA (2007) Plasma osteoprotegerin levels in the general population. Hypertension 49:1392–1396CrossRefGoogle Scholar
  82. 82.
    Mohammadpour AH, Shamsara J, Nazemi S, Ghadizadeh, Shahsavand S, Ramezani M (2012) Evaluation of RANKL/OPG serum concentration ratio as a new biomarker for coronary artery calcification: a pilot study. Thrombosis 306263Google Scholar
  83. 83.
    Vickers KC, Castro-Chavez F, Morrisett JD (2010) Lyso-phosphatidylcholine induces osteogenic gene expression and phenotype in vascular smooth muscle cells. Atherosclerosis 211:122–129CrossRefGoogle Scholar
  84. 84.
    Cushing GL, Gaubatz JW, Nava ML, Burdick BJ, Bocan TMA, Guyton JR, Weilbaecher D, DeBakey ME, Lawrie GM, Morrisett JD (1989) Quantitation and localization of apolipoproteins [a] and B in coronary artery bypass vein grafts resected at re-operation. Arteriosclerosis 9:593–603CrossRefGoogle Scholar
  85. 85.
    Jansson AM, Hartford M, Omland T, Karlsson T, Lindmarker P, Herlitz J, Ueland T, Aukrust P, Caidahl K (2012) Multimarker risk assessment including osteoprotegerin and CXLC16 in acute coroonary syndromes. Arterioscler Thromb Vasc Biol 32:3041–3049CrossRefGoogle Scholar
  86. 86.
    Caidahl K, Ueland T, Aukrust P (2010) Osteoprotegerin: a biomarker with many faces. Arterioscler Thromb Vasc Biol 30:1684–1686CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Catherine L. Higgins
    • 1
  • Salim Isbilir
    • 1
  • Pamela Basto
    • 1
  • Iou Yih Chen
    • 1
  • Muthiah Vaduganathan
    • 2
  • Periyanan Vaduganathan
    • 2
  • Michael J. Reardon
    • 2
  • Gerald Lawrie
    • 2
  • Leif Peterson
    • 3
  • Joel D. Morrisett
    • 1
    • 2
  1. 1.Department of MedicineBaylor College of MedicineHoustonUSA
  2. 2.Methodist DeBakey Heart and Vascular CenterHouston Methodist HospitalHoustonUSA
  3. 3.Department of Public HealthThe Methodist Hospital Research InstituteHoustonUSA

Personalised recommendations