Skip to main content
Log in

Cloning, Expression and Characterization of Sugarcane (Saccharum officinarum L.) Transketolase

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Pentose phosphate pathway (PPP) composed of two functionally-connected phases, the oxidative and non-oxidative phase. Both phases catalysed by a series of enzymes. Transketolase is one of key enzymes of non-oxidative phase in which transfer two carbon units from fructose-6-phosphate to erythrose-4-phosphate and convert glyceraldehyde-3-phosphate to xylulose-5-phosphate. In plant, erythrose-4-phosphate enters the shikimate pathway which is produces many secondary metabolites such as aromatic amino acids, flavonoids, lignin. Although transketolase in plant system is important, study of this enzyme is still limited. Until to date, TKT genes had been isolated only from seven plants species, thus, the aim of present study to isolate, study the similarity and phylogeny of transketolase from sugarcane. Unlike bacteria, fungal and animal, PPP is complete in the cytosol and all enzymes are found cytosolic. However, in plant, the oxidative phase found localised in the cytosol but the sub localisation for non-oxidative phase might be restricted to plastid. Thus, this study was conducted to determine subcellular localization of sugarcane transketolase. The isolation of sugarcane TKT was done by reverse transcription polymerase chain reaction, followed by cloning into pJET1.2 vector and sequencing. This study has isolated 2,327 bp length of sugarcane TKT. The molecular phylogenetic tree analysis found that transketolase from sugarcane and Zea mays in one group. Classification analysis found that both plants showed closer relationship due to both plants in the same taxon i.e. family Poaceae. Target P 1.1 and Chloro P predicted that the compartmentation of sugarcane transketolase is localised in the chloroplast which is 85 amino acids are plant plastid target sequence. This led to conclusion that the PPP is incomplete in the cytosol of sugarcane. This study also found that the similarity sequence of sugarcane TKT closely related with the taxonomy plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PPP:

Pentose phosphate pathway

TKT:

Transketolase

RT-PCR:

Reverse transcription polymerase chain reaction

DNA:

Deoxyribonucleic acid

PCR:

Polymerase chain reaction

cDNA:

Complementary deoxyribonucleic acid

LB:

Luria–Bertani

IPTG:

Isopropyl-b-d-thiogalactopyranoside

rpm:

Revolutions per minute

SDS-PAGE:

Sodium dodecyl sulphate–polyacrylamide gel electrophoresis

References

  1. Bernacchia G, Schwall G, Lottspeich F, Salamini F, Bartels D (1995) EMBO J 14(3):610–618

    CAS  Google Scholar 

  2. Boddey RM (1995) Crit Rev Plant Sci 14:263–279

    Article  Google Scholar 

  3. Caillau M, Quick WP (2005) Plant J 43:1–16

    Article  CAS  Google Scholar 

  4. Debnam PM, Emes MJ (1999) Plant J 38(1):49–59

    Article  Google Scholar 

  5. Debnam PM, Fernie AR, Leisse A, Golding A, Bowsher CG, Grimshaw C, Knight JS, Emes MJ (2004) Plant J 38(1):49–59

    Article  CAS  Google Scholar 

  6. Dennis DT (1997) American Society of Plant Physiologists, Rockville, MD: 630–675

  7. Doyle JJ, Gaut BS (2000) Plant Mol Biol 42(1):1–23

    Article  CAS  Google Scholar 

  8. Eicks M, Maurino V, Knappe S, Flügge UI, Fischer K (2002) Plant Physiol 128:512–522

    Article  CAS  Google Scholar 

  9. Emes MJ, Fowler MW (1979) Planta 144:249–253

    Article  CAS  Google Scholar 

  10. Fischer K, Kammerer B, Gutensohn M, Arbinger B, Weber A, Häusler R, Flügge UI (1997) Plant cell 9:453–462

    Article  CAS  Google Scholar 

  11. Flechner A, Dressen U, Westhoff P, Henze K, Schnarrenberger C, Martin W (1996) Plant Mol Biol 32(3):475–484

    Article  CAS  Google Scholar 

  12. Fliege R, Flügge UI, Werdan K, Heldt HW (1978) Biochim Biophys Acta 502:232–242

    Article  CAS  Google Scholar 

  13. Flügge UI, Fischer K, Gross A, Sebald W, Lottspeich F, Echerskorn C (1989) EMBO J 8:39–46

    Google Scholar 

  14. Flügge UI, Häusler RE, Ludewig F, Fischer K (2002) Physiol Plant 118:475–482

    Article  Google Scholar 

  15. Fullam E, Pojer F, Bergfors T, Jones TA, Cole T (2012) Open Biol 2(1):11–26

    Article  Google Scholar 

  16. Garnier T, Eiglmeier K, Camus JC, Medina N, Mansoor H, Pryor M, Duthoy S, Grondin S, Lacroix C, Monsempe C, Simon S, Harris B, Atkin R, Doggett J, Mayes R, Keating L, Wheeler PR, Parkhill J, Barrell BG, Cole ST, Gordon SV, Hewinson RG (2003) Proc Natl Acad Sci USA 100(13):7877–7882

    Article  CAS  Google Scholar 

  17. Ghassemian M, Waner D, Tchieu J, Gribskov M, Schroeder JI (2001) Trends Plant Sci 6:448–449

    Article  CAS  Google Scholar 

  18. Gerhardt S, Echt S, Busch M, Freigang J, Auerbach G, Bader G, Martin WF, Bacher A, Huber R, Fischer M (2003) Plant Physiol 132(4):1941–1949

    Article  CAS  Google Scholar 

  19. Joshi S, Singh AR, Kumar A, Misra PC, Siddiqi MI, Saxena JK (2008) Mol Biochem Parasitol 160(1):32–41

    Article  CAS  Google Scholar 

  20. Kammerer B, Fischer K, Hilpert B, Schubert S, Gutensohn M, Weber A, Flügge UI (1998) Plant Cell 10:105–117

    Article  CAS  Google Scholar 

  21. Kruger NJ, von Schaewen A (2003) Curr Opin Plant Biol 6(3):236–246

    Article  CAS  Google Scholar 

  22. Kwon SJ, Choi EY, Choi YJ, Ahn JH, Park OK (2006) J Exp Bot 57(7):1547–1552

    Article  CAS  Google Scholar 

  23. Laemmli UK (1970) Nature 227(5259):680–685

    Article  CAS  Google Scholar 

  24. Roscher A, Kruger NJ, Ratcliffe RG (2000) J Biotechnol 77:81–102

    Article  CAS  Google Scholar 

  25. Shah S, Sharma S, Gupta M (2004) Energy Fuels 18(1):145–159

    Article  Google Scholar 

  26. Sprenger GA, Schorken U, Sprenger G, Sahm H (1993) Eur J Biochem 230(2):525–532

    Article  Google Scholar 

  27. Streatfield SJ, Weber A, Kinsman EA, Häusler RE, Li J, Post-Beittenmiller D, Kaiser WM, Pyke KA, Flügge UI, Chory J (1999) Plant Cell 11:1609–1621

    Article  CAS  Google Scholar 

  28. Taulé C, Mareque C, Barlocco C, Hackembruch F, Reis VM, Sicardi M, Battistoni F (2012) Plant Soil 356:35–49

    Article  Google Scholar 

  29. Teige M, Kopriva S, Bauwe H, Süss KH (1996) Plant Physiol 112:1735

    Article  Google Scholar 

  30. Tenno T, Goda N, Tateishi Y, Tochio H, Mishima M, Hayashi H (2004) Protein Eng Des Sel 17(4):305–314

    Article  CAS  Google Scholar 

  31. Terpe K (2003) Appl Microbiol Biotechnol 60(5):523–533

    Article  CAS  Google Scholar 

  32. Tzin V, Galili G (2010) Mol plant 3(6):956–972

    Article  CAS  Google Scholar 

  33. Wikner C, Nilsson U, Meshalkina L, Udekwu C, Lindqvist Y, Schneider G (1997) Biochemistry 36(50):15643–15649

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The above study was made possible through the generosity of many individuals. We would like to acknowledge to Universiti Putra Malaysia for the research grants, Research University Grant Scheme (RUGS6) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Nulit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalhori, N., Nulit, R. & Go, R. Cloning, Expression and Characterization of Sugarcane (Saccharum officinarum L.) Transketolase. Protein J 32, 551–559 (2013). https://doi.org/10.1007/s10930-013-9516-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-013-9516-z

Keywords

Navigation