The Protein Journal

, Volume 32, Issue 7, pp 551–559 | Cite as

Cloning, Expression and Characterization of Sugarcane (Saccharum officinarum L.) Transketolase

  • Nahid Kalhori
  • R. Nulit
  • Rusea Go


Pentose phosphate pathway (PPP) composed of two functionally-connected phases, the oxidative and non-oxidative phase. Both phases catalysed by a series of enzymes. Transketolase is one of key enzymes of non-oxidative phase in which transfer two carbon units from fructose-6-phosphate to erythrose-4-phosphate and convert glyceraldehyde-3-phosphate to xylulose-5-phosphate. In plant, erythrose-4-phosphate enters the shikimate pathway which is produces many secondary metabolites such as aromatic amino acids, flavonoids, lignin. Although transketolase in plant system is important, study of this enzyme is still limited. Until to date, TKT genes had been isolated only from seven plants species, thus, the aim of present study to isolate, study the similarity and phylogeny of transketolase from sugarcane. Unlike bacteria, fungal and animal, PPP is complete in the cytosol and all enzymes are found cytosolic. However, in plant, the oxidative phase found localised in the cytosol but the sub localisation for non-oxidative phase might be restricted to plastid. Thus, this study was conducted to determine subcellular localization of sugarcane transketolase. The isolation of sugarcane TKT was done by reverse transcription polymerase chain reaction, followed by cloning into pJET1.2 vector and sequencing. This study has isolated 2,327 bp length of sugarcane TKT. The molecular phylogenetic tree analysis found that transketolase from sugarcane and Zea mays in one group. Classification analysis found that both plants showed closer relationship due to both plants in the same taxon i.e. family Poaceae. Target P 1.1 and Chloro P predicted that the compartmentation of sugarcane transketolase is localised in the chloroplast which is 85 amino acids are plant plastid target sequence. This led to conclusion that the PPP is incomplete in the cytosol of sugarcane. This study also found that the similarity sequence of sugarcane TKT closely related with the taxonomy plants.


Transketolase Pentose phosphate pathway Subcellular localisation Phylogenetic Sugarcane cDNA cloning Protein expression 



Pentose phosphate pathway




Reverse transcription polymerase chain reaction


Deoxyribonucleic acid


Polymerase chain reaction


Complementary deoxyribonucleic acid






Revolutions per minute


Sodium dodecyl sulphate–polyacrylamide gel electrophoresis



The above study was made possible through the generosity of many individuals. We would like to acknowledge to Universiti Putra Malaysia for the research grants, Research University Grant Scheme (RUGS6) for financial support.


  1. 1.
    Bernacchia G, Schwall G, Lottspeich F, Salamini F, Bartels D (1995) EMBO J 14(3):610–618Google Scholar
  2. 2.
    Boddey RM (1995) Crit Rev Plant Sci 14:263–279CrossRefGoogle Scholar
  3. 3.
    Caillau M, Quick WP (2005) Plant J 43:1–16CrossRefGoogle Scholar
  4. 4.
    Debnam PM, Emes MJ (1999) Plant J 38(1):49–59CrossRefGoogle Scholar
  5. 5.
    Debnam PM, Fernie AR, Leisse A, Golding A, Bowsher CG, Grimshaw C, Knight JS, Emes MJ (2004) Plant J 38(1):49–59CrossRefGoogle Scholar
  6. 6.
    Dennis DT (1997) American Society of Plant Physiologists, Rockville, MD: 630–675Google Scholar
  7. 7.
    Doyle JJ, Gaut BS (2000) Plant Mol Biol 42(1):1–23CrossRefGoogle Scholar
  8. 8.
    Eicks M, Maurino V, Knappe S, Flügge UI, Fischer K (2002) Plant Physiol 128:512–522CrossRefGoogle Scholar
  9. 9.
    Emes MJ, Fowler MW (1979) Planta 144:249–253CrossRefGoogle Scholar
  10. 10.
    Fischer K, Kammerer B, Gutensohn M, Arbinger B, Weber A, Häusler R, Flügge UI (1997) Plant cell 9:453–462CrossRefGoogle Scholar
  11. 11.
    Flechner A, Dressen U, Westhoff P, Henze K, Schnarrenberger C, Martin W (1996) Plant Mol Biol 32(3):475–484CrossRefGoogle Scholar
  12. 12.
    Fliege R, Flügge UI, Werdan K, Heldt HW (1978) Biochim Biophys Acta 502:232–242CrossRefGoogle Scholar
  13. 13.
    Flügge UI, Fischer K, Gross A, Sebald W, Lottspeich F, Echerskorn C (1989) EMBO J 8:39–46Google Scholar
  14. 14.
    Flügge UI, Häusler RE, Ludewig F, Fischer K (2002) Physiol Plant 118:475–482CrossRefGoogle Scholar
  15. 15.
    Fullam E, Pojer F, Bergfors T, Jones TA, Cole T (2012) Open Biol 2(1):11–26CrossRefGoogle Scholar
  16. 16.
    Garnier T, Eiglmeier K, Camus JC, Medina N, Mansoor H, Pryor M, Duthoy S, Grondin S, Lacroix C, Monsempe C, Simon S, Harris B, Atkin R, Doggett J, Mayes R, Keating L, Wheeler PR, Parkhill J, Barrell BG, Cole ST, Gordon SV, Hewinson RG (2003) Proc Natl Acad Sci USA 100(13):7877–7882CrossRefGoogle Scholar
  17. 17.
    Ghassemian M, Waner D, Tchieu J, Gribskov M, Schroeder JI (2001) Trends Plant Sci 6:448–449CrossRefGoogle Scholar
  18. 18.
    Gerhardt S, Echt S, Busch M, Freigang J, Auerbach G, Bader G, Martin WF, Bacher A, Huber R, Fischer M (2003) Plant Physiol 132(4):1941–1949CrossRefGoogle Scholar
  19. 19.
    Joshi S, Singh AR, Kumar A, Misra PC, Siddiqi MI, Saxena JK (2008) Mol Biochem Parasitol 160(1):32–41CrossRefGoogle Scholar
  20. 20.
    Kammerer B, Fischer K, Hilpert B, Schubert S, Gutensohn M, Weber A, Flügge UI (1998) Plant Cell 10:105–117CrossRefGoogle Scholar
  21. 21.
    Kruger NJ, von Schaewen A (2003) Curr Opin Plant Biol 6(3):236–246CrossRefGoogle Scholar
  22. 22.
    Kwon SJ, Choi EY, Choi YJ, Ahn JH, Park OK (2006) J Exp Bot 57(7):1547–1552CrossRefGoogle Scholar
  23. 23.
    Laemmli UK (1970) Nature 227(5259):680–685CrossRefGoogle Scholar
  24. 24.
    Roscher A, Kruger NJ, Ratcliffe RG (2000) J Biotechnol 77:81–102CrossRefGoogle Scholar
  25. 25.
    Shah S, Sharma S, Gupta M (2004) Energy Fuels 18(1):145–159CrossRefGoogle Scholar
  26. 26.
    Sprenger GA, Schorken U, Sprenger G, Sahm H (1993) Eur J Biochem 230(2):525–532CrossRefGoogle Scholar
  27. 27.
    Streatfield SJ, Weber A, Kinsman EA, Häusler RE, Li J, Post-Beittenmiller D, Kaiser WM, Pyke KA, Flügge UI, Chory J (1999) Plant Cell 11:1609–1621CrossRefGoogle Scholar
  28. 28.
    Taulé C, Mareque C, Barlocco C, Hackembruch F, Reis VM, Sicardi M, Battistoni F (2012) Plant Soil 356:35–49CrossRefGoogle Scholar
  29. 29.
    Teige M, Kopriva S, Bauwe H, Süss KH (1996) Plant Physiol 112:1735CrossRefGoogle Scholar
  30. 30.
    Tenno T, Goda N, Tateishi Y, Tochio H, Mishima M, Hayashi H (2004) Protein Eng Des Sel 17(4):305–314CrossRefGoogle Scholar
  31. 31.
    Terpe K (2003) Appl Microbiol Biotechnol 60(5):523–533CrossRefGoogle Scholar
  32. 32.
    Tzin V, Galili G (2010) Mol plant 3(6):956–972CrossRefGoogle Scholar
  33. 33.
    Wikner C, Nilsson U, Meshalkina L, Udekwu C, Lindqvist Y, Schneider G (1997) Biochemistry 36(50):15643–15649CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Biology, Faculty of ScienceUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations