Skip to main content
Log in

A New Approach in the Active Site Investigation of an Inverting β-d-Xylosidase from Thermobifida fusca TM51

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The catalytic amino acid residues of the β-d-xylosidase (EC 3.2.1.37; GH43), from Thermobifida fusca TM51 (TfBXyl43), were investigated by direct chemical modifications. The pH dependence curves of the kinetic parameters (kcat and kcat/KM) gave pK values for the free enzyme (5.55 ± 0.19; 6.44 ± 0.19), and pK values of for the enzyme–substrate complex (4.85 ± 0.23; 7.60 ± 0.28) respectively, by using an artificial substrate p-nitrophenyl-β-d-xylopyranoside (pNP-Xyl). The detailed inhibition studies demonstrated well the hydrophobic character of the glycon binding site. Carbodiimide-mediated chemical modifications of the enzyme with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) in the presence of glycine methyl ester supports the conclusion that a carboxylate residue can be fundamental in the catalytic process. We have also synthesized and tested N-bromoacetyl-β-d-xylopyranosylamine (NBAXA) for TfBXyl43 as an affinity label, which also inactivated the enzyme irreversible. The pH dependence studies in both cases of inactivation revealed that the modified group is the catalytic proton donor (NBAXA pKA = 6.68 ± 0,1; EDAC pKA = 7.42 ± 0.22) which displays its essential role in the hydrolytic process. The β-d-xylopyranosylazide as competitive inhibitor protected the enzyme in all cases against the inactivation, suggesting that the chemical modification which has an impact on the activity took place in the active center. Changing of the enzyme conformation was followed by CD spectroscopy, as a result of the NBAXA inactivation. Our study is important because to our knowledge no similar investigations were made in the case of an inverting β-d-xylosidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EDAC:

1-ethyl-3-(3-dimethylaminopropyl) carbodiimide

GH43:

Glycoside hydrolase family 43

NBAXA:

N-bromoacetyl-β-d-xylopyranosylamine

pNP-Xyl:

p-nitrophenyl-β-d-xylopyranoside

TfBXyl43:

β-d-xylosidase from Thermobifida fusca TM51

XylN3 :

β-d-xylopyranosylazide

References

  1. Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Appl Microbiol Biotechnol 56:326–338

    Article  CAS  Google Scholar 

  2. Black TS, Kiss L, Tull D, Withers SG (1993) Carbohydr Res 250:195–202

    Article  CAS  Google Scholar 

  3. Brunzelle JS, Jordan DB, McCaslin DR, Olczak A, Wawrzak Z (2008) Arch Biochem Biophys 474:157–166

    Article  CAS  Google Scholar 

  4. Brüx C, Ben-David A, Shallom-Shezifi D, Leon M, Niefind K, Shoham G, Shoham Y, Schomburg D (2006) J Mol Biol 359:97–109

    Article  Google Scholar 

  5. Cornish-Bowden A (1995) In: Cornish-Bowden A (ed) Fundamentals of enzyme kinetics. Portland Press, London

    Google Scholar 

  6. Coughlan MP, Hazlewood GP (1993) Biotechnol Appl Biochem 17:259–289

    CAS  Google Scholar 

  7. Davies GJ, Gloster TM, Henrissat B (2005) Curr Opin Struct Biol 15:637–645

    Article  CAS  Google Scholar 

  8. Dixon M (1953) Biochem J 55:170–171

    CAS  Google Scholar 

  9. de Melo EB, Gomes AD, Carvalho I (2006) Tetrahedron 62:10277–10302

    Article  Google Scholar 

  10. Fekete CA, Kiss L (2012) Protein J 31(8):641–650. doi:10.1007/s10930-012-9440-7

    Article  CAS  Google Scholar 

  11. Henrissat B, Davies G (1997) Curr Opin Struct Biol 7:637–644

    Article  CAS  Google Scholar 

  12. Jäger S, Kiss L (2005) World J Microbiol Biotechnol 21:337–343

    Article  Google Scholar 

  13. Jordan DB, Li X-L, Dunlap CA, Whitehead TR, Cotta MA (2007) Appl Biochem Biotechnol 136–140:93–104

    Article  Google Scholar 

  14. Keresztessy Zs, Kiss L, Hughes MA (1994) Arch Biochem Biophys 314:142–152

    Article  CAS  Google Scholar 

  15. Keresztessy Zs, Kiss L, Hughes MA (1994) Arch Biochem Biophys 315:323–330

    Article  CAS  Google Scholar 

  16. Kiss T, Erdei A, Kiss L (2002) Arch Biochem Biophys 399:188–194

    Article  CAS  Google Scholar 

  17. Kitz R, Wilson IB (1962) J Biol Chem 237:3245–3251

    CAS  Google Scholar 

  18. Knob A, Terrasan CRF, Carmona EC (2010) World J Microbiol Biotechnol 26(3):389–407

    Article  CAS  Google Scholar 

  19. Leatherbarrow RJ (2001) GraFit Version 5.0. Erithacus Software Ltd., Horley

    Google Scholar 

  20. Legler G (1977) Methods Enzymol 46:368–375

    Article  CAS  Google Scholar 

  21. Legler G (1990) Adv Carbohydr Chem Biochem 48:319–384

    Article  CAS  Google Scholar 

  22. Likhosherstov LM, Novikova OS, Derevitkovskaja VA, Kochetkov NK (1986) Carbohydr Res 146:C1–C5

    Article  CAS  Google Scholar 

  23. Lundblad RL, Noyes CM (1985) In: Lundblad RL, Noyes CM (eds) Chemical reagents for protein modification, vol II. CRC Press, New York

    Google Scholar 

  24. Manavalan P, Johnson C Jr (1985) Proc Int Symp Biomol Struct Interact Suppl J Biosci 8:141–149

    CAS  Google Scholar 

  25. Naider F, Bohak Z, Yariv J (1972) Biochemistry 11:3202–3208

    Article  CAS  Google Scholar 

  26. Paulsen H, Györgydeák Z, Friedmann M (1974) Chem Ber 107:1568–1578

    Article  CAS  Google Scholar 

  27. Polizeli MLTM, Rizatti ACS, Monti R, Terenzi HF, Amorim DS (2005) Appl Microbiol Biotechnol 67:577–591

    Article  CAS  Google Scholar 

  28. Rempel BP, Withers SG (2008) Glycobiology 18:570–586

    Article  CAS  Google Scholar 

  29. Saha BC (2003) J Ind Microbiol Biotechnol 30:279–291

    Article  CAS  Google Scholar 

  30. Shallom D, Leon M, Bravman T, Ben-David A, Zaide G, Belakhov V, Shoham G, Schomburg D, Baasov T, Shoham Y (2005) Biochemistry 44:387–397

    Article  CAS  Google Scholar 

  31. Sinnott ML (1987) In: Page MI, Williams A (eds) Enzyme mechanism. Soc Chem, London

    Google Scholar 

  32. Sinnott ML (1990) Chem Rev 90:1171–1202

    Article  CAS  Google Scholar 

  33. Sunna A, Antranikian G (1997) Crit Rev Biotechnol 17:39–67

    Article  CAS  Google Scholar 

  34. Thomas EW (1977) Methods Enzymol 46:362–368

    Article  CAS  Google Scholar 

  35. Tipton KF, Dixon HBF (1979) Methods Enzymol 63:183–234

    Article  CAS  Google Scholar 

  36. Tull D, Burgoyne DL, Chow DT, Withers SG, Aebersold R (1996) Anal Biochem 234:119–124

    Article  CAS  Google Scholar 

  37. Vasella A, Davies GJ, Bohm M (2002) Curr Opin Chem Biol 6:619–629

    Article  CAS  Google Scholar 

  38. Vocadlo DJ, Mackenzie LF, He S, Zeikus GJ, Withers SG (1998) Biochem J 335:449–455

    CAS  Google Scholar 

  39. Vocadlo DJ, Wicki J, Rupitz K, Withers SG (2002) Biochemistry 41:9736–9746

    Article  CAS  Google Scholar 

  40. Whitmore L, Wallace BA (2004) Nucleic Acids Res 32:W668–W673

    Article  CAS  Google Scholar 

  41. Whitmore L, Wallace BA (2008) Biopolymers 89:392–400

    Article  CAS  Google Scholar 

  42. Withers SG (2001) Carbohydr Polym 44:325–337

    Article  CAS  Google Scholar 

  43. Yang JL, Lu G, Eriksson K-EL (1992) Tappi J 75:95–101

    CAS  Google Scholar 

  44. Zechel DL, Withers SG (2000) Acc Chem Res 33:11–18

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank to Tibor Kurtán for the support in CD measurements and to Rita Somosi for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba Attila Fekete.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fekete, C.A., Kiss, L. A New Approach in the Active Site Investigation of an Inverting β-d-Xylosidase from Thermobifida fusca TM51. Protein J 32, 97–105 (2013). https://doi.org/10.1007/s10930-013-9463-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-013-9463-8

Keywords

Navigation