The Protein Journal

, Volume 32, Issue 2, pp 97–105 | Cite as

A New Approach in the Active Site Investigation of an Inverting β-d-Xylosidase from Thermobifida fusca TM51

  • Csaba Attila Fekete
  • László Kiss


The catalytic amino acid residues of the β-d-xylosidase (EC; GH43), from Thermobifida fusca TM51 (TfBXyl43), were investigated by direct chemical modifications. The pH dependence curves of the kinetic parameters (kcat and kcat/KM) gave pK values for the free enzyme (5.55 ± 0.19; 6.44 ± 0.19), and pK values of for the enzyme–substrate complex (4.85 ± 0.23; 7.60 ± 0.28) respectively, by using an artificial substrate p-nitrophenyl-β-d-xylopyranoside (pNP-Xyl). The detailed inhibition studies demonstrated well the hydrophobic character of the glycon binding site. Carbodiimide-mediated chemical modifications of the enzyme with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) in the presence of glycine methyl ester supports the conclusion that a carboxylate residue can be fundamental in the catalytic process. We have also synthesized and tested N-bromoacetyl-β-d-xylopyranosylamine (NBAXA) for TfBXyl43 as an affinity label, which also inactivated the enzyme irreversible. The pH dependence studies in both cases of inactivation revealed that the modified group is the catalytic proton donor (NBAXA pKA = 6.68 ± 0,1; EDAC pKA = 7.42 ± 0.22) which displays its essential role in the hydrolytic process. The β-d-xylopyranosylazide as competitive inhibitor protected the enzyme in all cases against the inactivation, suggesting that the chemical modification which has an impact on the activity took place in the active center. Changing of the enzyme conformation was followed by CD spectroscopy, as a result of the NBAXA inactivation. Our study is important because to our knowledge no similar investigations were made in the case of an inverting β-d-xylosidase.


Thermobifida fusca TM51 GH43 β-d-xylosidase Chemical modification Affinity label EDAC NBAXA 



1-ethyl-3-(3-dimethylaminopropyl) carbodiimide


Glycoside hydrolase family 43






β-d-xylosidase from Thermobifida fusca TM51





The authors wish to thank to Tibor Kurtán for the support in CD measurements and to Rita Somosi for her technical assistance.


  1. 1.
    Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Appl Microbiol Biotechnol 56:326–338CrossRefGoogle Scholar
  2. 2.
    Black TS, Kiss L, Tull D, Withers SG (1993) Carbohydr Res 250:195–202CrossRefGoogle Scholar
  3. 3.
    Brunzelle JS, Jordan DB, McCaslin DR, Olczak A, Wawrzak Z (2008) Arch Biochem Biophys 474:157–166CrossRefGoogle Scholar
  4. 4.
    Brüx C, Ben-David A, Shallom-Shezifi D, Leon M, Niefind K, Shoham G, Shoham Y, Schomburg D (2006) J Mol Biol 359:97–109CrossRefGoogle Scholar
  5. 5.
    Cornish-Bowden A (1995) In: Cornish-Bowden A (ed) Fundamentals of enzyme kinetics. Portland Press, LondonGoogle Scholar
  6. 6.
    Coughlan MP, Hazlewood GP (1993) Biotechnol Appl Biochem 17:259–289Google Scholar
  7. 7.
    Davies GJ, Gloster TM, Henrissat B (2005) Curr Opin Struct Biol 15:637–645CrossRefGoogle Scholar
  8. 8.
    Dixon M (1953) Biochem J 55:170–171Google Scholar
  9. 9.
    de Melo EB, Gomes AD, Carvalho I (2006) Tetrahedron 62:10277–10302CrossRefGoogle Scholar
  10. 10.
    Fekete CA, Kiss L (2012) Protein J 31(8):641–650. doi: 10.1007/s10930-012-9440-7 CrossRefGoogle Scholar
  11. 11.
    Henrissat B, Davies G (1997) Curr Opin Struct Biol 7:637–644CrossRefGoogle Scholar
  12. 12.
    Jäger S, Kiss L (2005) World J Microbiol Biotechnol 21:337–343CrossRefGoogle Scholar
  13. 13.
    Jordan DB, Li X-L, Dunlap CA, Whitehead TR, Cotta MA (2007) Appl Biochem Biotechnol 136–140:93–104CrossRefGoogle Scholar
  14. 14.
    Keresztessy Zs, Kiss L, Hughes MA (1994) Arch Biochem Biophys 314:142–152CrossRefGoogle Scholar
  15. 15.
    Keresztessy Zs, Kiss L, Hughes MA (1994) Arch Biochem Biophys 315:323–330CrossRefGoogle Scholar
  16. 16.
    Kiss T, Erdei A, Kiss L (2002) Arch Biochem Biophys 399:188–194CrossRefGoogle Scholar
  17. 17.
    Kitz R, Wilson IB (1962) J Biol Chem 237:3245–3251Google Scholar
  18. 18.
    Knob A, Terrasan CRF, Carmona EC (2010) World J Microbiol Biotechnol 26(3):389–407CrossRefGoogle Scholar
  19. 19.
    Leatherbarrow RJ (2001) GraFit Version 5.0. Erithacus Software Ltd., HorleyGoogle Scholar
  20. 20.
    Legler G (1977) Methods Enzymol 46:368–375CrossRefGoogle Scholar
  21. 21.
    Legler G (1990) Adv Carbohydr Chem Biochem 48:319–384CrossRefGoogle Scholar
  22. 22.
    Likhosherstov LM, Novikova OS, Derevitkovskaja VA, Kochetkov NK (1986) Carbohydr Res 146:C1–C5CrossRefGoogle Scholar
  23. 23.
    Lundblad RL, Noyes CM (1985) In: Lundblad RL, Noyes CM (eds) Chemical reagents for protein modification, vol II. CRC Press, New YorkGoogle Scholar
  24. 24.
    Manavalan P, Johnson C Jr (1985) Proc Int Symp Biomol Struct Interact Suppl J Biosci 8:141–149Google Scholar
  25. 25.
    Naider F, Bohak Z, Yariv J (1972) Biochemistry 11:3202–3208CrossRefGoogle Scholar
  26. 26.
    Paulsen H, Györgydeák Z, Friedmann M (1974) Chem Ber 107:1568–1578CrossRefGoogle Scholar
  27. 27.
    Polizeli MLTM, Rizatti ACS, Monti R, Terenzi HF, Amorim DS (2005) Appl Microbiol Biotechnol 67:577–591CrossRefGoogle Scholar
  28. 28.
    Rempel BP, Withers SG (2008) Glycobiology 18:570–586CrossRefGoogle Scholar
  29. 29.
    Saha BC (2003) J Ind Microbiol Biotechnol 30:279–291CrossRefGoogle Scholar
  30. 30.
    Shallom D, Leon M, Bravman T, Ben-David A, Zaide G, Belakhov V, Shoham G, Schomburg D, Baasov T, Shoham Y (2005) Biochemistry 44:387–397CrossRefGoogle Scholar
  31. 31.
    Sinnott ML (1987) In: Page MI, Williams A (eds) Enzyme mechanism. Soc Chem, LondonGoogle Scholar
  32. 32.
    Sinnott ML (1990) Chem Rev 90:1171–1202CrossRefGoogle Scholar
  33. 33.
    Sunna A, Antranikian G (1997) Crit Rev Biotechnol 17:39–67CrossRefGoogle Scholar
  34. 34.
    Thomas EW (1977) Methods Enzymol 46:362–368CrossRefGoogle Scholar
  35. 35.
    Tipton KF, Dixon HBF (1979) Methods Enzymol 63:183–234CrossRefGoogle Scholar
  36. 36.
    Tull D, Burgoyne DL, Chow DT, Withers SG, Aebersold R (1996) Anal Biochem 234:119–124CrossRefGoogle Scholar
  37. 37.
    Vasella A, Davies GJ, Bohm M (2002) Curr Opin Chem Biol 6:619–629CrossRefGoogle Scholar
  38. 38.
    Vocadlo DJ, Mackenzie LF, He S, Zeikus GJ, Withers SG (1998) Biochem J 335:449–455Google Scholar
  39. 39.
    Vocadlo DJ, Wicki J, Rupitz K, Withers SG (2002) Biochemistry 41:9736–9746CrossRefGoogle Scholar
  40. 40.
    Whitmore L, Wallace BA (2004) Nucleic Acids Res 32:W668–W673CrossRefGoogle Scholar
  41. 41.
    Whitmore L, Wallace BA (2008) Biopolymers 89:392–400CrossRefGoogle Scholar
  42. 42.
    Withers SG (2001) Carbohydr Polym 44:325–337CrossRefGoogle Scholar
  43. 43.
    Yang JL, Lu G, Eriksson K-EL (1992) Tappi J 75:95–101Google Scholar
  44. 44.
    Zechel DL, Withers SG (2000) Acc Chem Res 33:11–18Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Genetics and Applied Microbiology, Faculty of SciencesUniversity of DebrecenDebrecenHungary

Personalised recommendations