The Protein Journal

, Volume 31, Issue 8, pp 656–666 | Cite as

An Arsenic Fluorescent Compound as a Novel Probe to Study Arsenic-Binding Proteins

  • A. Lis Femia
  • C. Facundo Temprana
  • Javier Santos
  • María Laura Carbajal
  • María Silvia Amor
  • Mariano Grasselli
  • Silvia del V. Alonso


Arsenic-binding proteins are under continuous research. Their identification and the elucidation of arsenic/protein interaction mechanisms are important because the biological effects of these complexes may be related not only to arsenic but also to the arsenic/protein structure. Although many proteins bearing a CXXC motif have been found to bind arsenic in vivo, new tools are necessary to identify new arsenic targets and allow research on protein/arsenic complexes. In this work, we analyzed the performance of the fluorescent compound APAO-FITC (synthesized from p-aminophenylarsenoxide, APAO, and fluorescein isothiocyanate, FITC) in arsenic/protein binding assays using thioredoxin 1 (Trx) as an arsenic-binding protein model. The Trx-APAO-FITC complex was studied through different spectroscopic techniques involving UV–Vis, fluorescence, atomic absorption, infrared and circular dichroism. Our results show that APAO-FITC binds efficiently and specifically to the Trx binding site, labeling the protein fluorescently, without altering its structure and activity. In summary, we were able to study a protein/arsenic complex model, using APAO-FITC as a labeling probe. The use of APAO-FITC in the identification of different protein and cell targets, as well as in in vivo biodistribution studies, conformational studies of arsenic-binding proteins, and studies for the design of drug delivery systems for arsenic anti-cancer therapies, is highly promising.


Arsenic carcinogenesis Circular dichroism Conformational studies Drug delivery systems Thioredoxin 





Compound between p-aminophenylarsenoxide and fluorescein isothiocyanate


Attenuated total reflectance-fourier transform infrared


Circular dichroism




Ethylenediaminetetraacetic acid


Fluorescein isothiocyanate




Phosphate saline buffer


Relative fluorescence units


Sodium dodecyl sulfate polyacrylamide gel electrophoresis





We want to thank Dr. Gerardo Caballero for helpful discussions with mass spectra analyses, and to Lic Martín Noguera for his assistance with CD experiments. This work was supported by grants from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET; PIP 5832/05) and Universidad Nacional de Quilmes (UNQ; UNQ-MPBio 53/1001(PUNQ0396/07), MINCyT (PME 01730). S del VA, MLC and MG are members of CONICET (Scientific Research Program) and IMBICE. Fellowships for ALF (CONICET, Posgrado T-I and II, D. No. Res. 1086/09), CFT (CONICET, Posgrado T-I and II, D. No. Res. 3100/08) and MSA (UNQ, No. Res. (CS) 113/07) are acknowledged.


  1. 1.
    Ado K, Taniguchi Y (2007) Biochim Biophys Acta 1774(7):813–821CrossRefGoogle Scholar
  2. 2.
    Ansorge W, Sproat B, Stegemann J, Schwager C, Zenke M (1987) Nucleic Acids Res 15(11):4593–4602CrossRefGoogle Scholar
  3. 3.
    Ansorge W, Rosenthal A, Sproat B, Schwager C, Stegemann J, Voss H (1988) Nucleic Acids Res 16(5):2203–2206CrossRefGoogle Scholar
  4. 4.
    Berry FB, Skarie JM, Mirzayans F, Fortin Y, Hudson TJ, Raymond V, Link BA, Walter MA (2008) Hum Mol Genet 17(4):490–505CrossRefGoogle Scholar
  5. 5.
    Brown CJ, Dastidar SG, See HY, Coomber DW, Ortiz-Lombardia M, Verma C, Lane DP (2010) J Mol Biol 395(4):871–883CrossRefGoogle Scholar
  6. 6.
    Burwell LS, Nadtochiy SM, Tompkins AJ, Young S, Brookes PS (2006) Biochem J 394(Pt 3):627–634Google Scholar
  7. 7.
    Carbajal ML, Espinoza SLS, Valdez SN, Poskus E, Smolko EE, Grasselli M (2009) React Funct Polym 69(11):816–820CrossRefGoogle Scholar
  8. 8.
    Cleland WW (1964) Biochemistry 3:480–482CrossRefGoogle Scholar
  9. 9.
    Clerico EM, Ermacora MR (2001) Arch Biochem Biophys 395(2):215–224CrossRefGoogle Scholar
  10. 10.
    Cline DJ, Thorpe C, Schneider JP (2003) J Am Chem Soc 125(10):2923–2929CrossRefGoogle Scholar
  11. 11.
    Collet JF, Messens J (2010) Antioxid Redox Signal 13(8):1205–1216CrossRefGoogle Scholar
  12. 12.
    Coto-Garcia AM, Sotelo-Gonzalez E, Fernandez-Arguelles MT, Pereiro R, Costa-Fernandez JM, Sanz-Medel A (2011) Anal Bioanal Chem 399(1):29–42CrossRefGoogle Scholar
  13. 13.
    Chen Y, Parr T, Holmes AE, Nakanishi K (2008) Bioconjug Chem 19(1):5–9CrossRefGoogle Scholar
  14. 14.
    Donoghue N, Yam PT, Jiang XM, Hogg PJ (2000) Protein Sci 9(12):2436–2445CrossRefGoogle Scholar
  15. 15.
    Dorward A, Sweet S, Moorehead R, Singh G (1997) J Bioenerg Biomembr 29(4):385–392CrossRefGoogle Scholar
  16. 16.
    Edgington LE, Berger AB, Blum G, Albrow VE, Paulick MG, Lineberry N, Bogyo M (2009) Nat Med 15(8):967–973CrossRefGoogle Scholar
  17. 17.
    Femia AL, Temprana CF, Amor MS, Grasselli M, Alonso Sdel V (2012) Med Chem 8(2):222–229Google Scholar
  18. 18.
    Fernando MR, Nanri H, Yoshitake S, Nagata-Kuno K, Minakami S (1992) Eur J Biochem/FEBS 209(3):917–922CrossRefGoogle Scholar
  19. 19.
    Flora SJ (2011) Free Radic Biol Med 51(2):257–281CrossRefGoogle Scholar
  20. 20.
    Fu GH, Wang Y, Xi YH, Guo ZW, Liu XB, Bai SZ, Yang BF, Chen GQ (2005) J Drug Target 13(4):235–243CrossRefGoogle Scholar
  21. 21.
    Ge Y, Qi Z, Wang Y, Liu X, Li J, Xu J, Liu J, Shen J (2009) Int J Biochem Cell Biol 41(4):900–906CrossRefGoogle Scholar
  22. 22.
    Gholivand MB, Ghasemi JB, Saaidpour S, Mohajeri A (2008) Spectrochim Acta A Mol Biomol Spectrosc 71(3):1158–1165CrossRefGoogle Scholar
  23. 23.
    Gorman JJ (1987) Anal Biochem 160(2):376–387CrossRefGoogle Scholar
  24. 24.
    Griffin BA, Adams SR, Jones J, Tsien RY (2000) Methods Enzymol 327:565–578CrossRefGoogle Scholar
  25. 25.
    Gupta S, Yel L, Kim D, Kim C, Chiplunkar S, Gollapudi S (2003) Mol Cancer Ther 2(8):711–719Google Scholar
  26. 26.
    Holmgren A (1979) J Biol Chem 254(19):9627–9632Google Scholar
  27. 27.
    Holmgren A (1995) Structure 3(3):239–243CrossRefGoogle Scholar
  28. 28.
    Jeng MF, Campbell AP, Begley T, Holmgren A, Case DA, Wright PE, Dyson HJ (1994) Structure 2(9):853–868CrossRefGoogle Scholar
  29. 29.
    Kitchin KT, Wallace K (2006) J Biochem Mol Toxicol 20(1):48–56CrossRefGoogle Scholar
  30. 30.
    Kitchin KT, Wallace K (2008) J Inorg Biochem 102(3):532–539CrossRefGoogle Scholar
  31. 31.
    Laurent TC, Moore EC, Reichard P (1964) J Biol Chem 239:3436–3444Google Scholar
  32. 32.
    Layton CJ, Hellinga HW (2010) Biochemistry 49(51):10831–10841CrossRefGoogle Scholar
  33. 33.
    Lundstrom J, Krause G, Holmgren A (1992) J Biol Chem 267(13):9047–9052Google Scholar
  34. 34.
    Martin SR, Schilstra MJ (2008) Methods Cell Biol 84:263–293CrossRefGoogle Scholar
  35. 35.
    Miller WH Jr, Schipper HM, Lee JS, Singer J, Waxman S (2002) Cancer Res 62(14):3893–3903Google Scholar
  36. 36.
    Mitsui A, Hirakawa T, Yodoi J (1992) Biochem Biophys Res Commun 186(3):1220–1226CrossRefGoogle Scholar
  37. 37.
    Nakamura H, Masutani H, Yodoi J (2006) Semin Cancer Biol 16(6):444–451CrossRefGoogle Scholar
  38. 38.
    Nakamura H, Hoshino Y, Okuyama H, Matsuo Y, Yodoi J (2009) Adv Drug Deliv Rev 61(4):303–309CrossRefGoogle Scholar
  39. 39.
    Oblong JE, Berggren M, Powis G (1994) FEBS Lett 343(1):81–84CrossRefGoogle Scholar
  40. 40.
    Olson ES, Jiang T, Aguilera TA, Nguyen QT, Ellies LG, Scadeng M, Tsien RY (2010) Proc Natl Acad Sci USA:1–6Google Scholar
  41. 41.
    Palaniappan PR, Vijayasundaram V (2008) Food Chem Toxicol 46(11):3534–3539CrossRefGoogle Scholar
  42. 42.
    Ralph SJ (2008) Metal Based Drugs 2008:260146CrossRefGoogle Scholar
  43. 43.
    Ramadan D, Cline DJ, Bai S, Thorpe C, Schneider JP (2007) J Am Chem Soc 129(10):2981–2988CrossRefGoogle Scholar
  44. 44.
    Ramadan D, Rancy PC, Nagarkar RP, Schneider JP, Thorpe C (2009) Biochemistry 48(2):424–432CrossRefGoogle Scholar
  45. 45.
    Santos J, Marino-Buslje C, Kleinman C, Ermacora MR, Delfino JM (2007) Biochemistry 46(17):5148–5159CrossRefGoogle Scholar
  46. 46.
    Savickiene J, Treigyte G, Gineitis A, Navakauskiene R (2010) In Vitro Cell Dev Biol Anim 46(6):547–559CrossRefGoogle Scholar
  47. 47.
    Sebastia J, Cristofol R, Martin M, Rodriguez-Farre E, Sanfeliu C (2003) Cytometry A J Int Soc Anal Cytol 51(1):16–25CrossRefGoogle Scholar
  48. 48.
    Singh BR (2000) Infrared analysis of peptides and proteins: principles and applications. ACS symposium series, vol 750, American Chemical Society, WashingtonGoogle Scholar
  49. 49.
    Stevenson KJ, Hale G, Perham RN (1978) Biochemistry 17(11):2189–2192CrossRefGoogle Scholar
  50. 50.
    Stroffekova K, Proenza C, Beam KG (2001) Pflugers Archiv Eur J Physiol 442(6):859–866CrossRefGoogle Scholar
  51. 51.
    Tseng CH (2004) Toxicol Appl Pharmacol 197(2):67–83CrossRefGoogle Scholar
  52. 52.
    Vizioli NM, Rusell ML, Carbajal ML, Carducci CN, Grasselli M (2005) Electrophoresis 26(15):2942–2948CrossRefGoogle Scholar
  53. 53.
    Yeh AP, McMillan A, Stowell MH (2006) Acta crystallographica Section D. Biol Crystallogr 62(Pt 4):451–457CrossRefGoogle Scholar
  54. 54.
    Zhang X, Yang F, Shim JY, Kirk KL, Anderson DE, Chen X (2007) Cancer Lett 255(1):95–106CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • A. Lis Femia
    • 1
  • C. Facundo Temprana
    • 1
    • 2
  • Javier Santos
    • 4
  • María Laura Carbajal
    • 3
  • María Silvia Amor
    • 1
  • Mariano Grasselli
    • 3
  • Silvia del V. Alonso
    • 1
  1. 1.Laboratorio de Biomembranas, Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesBuenos AiresArgentina
  2. 2.Laboratorio de Inmunología y Virología, Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesBuenos AiresArgentina
  3. 3.LaMaBio, Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesBuenos AiresArgentina
  4. 4.Instituto de Bioquímica y Biofísica (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations