Skip to main content
Log in

Purification and Characterization of a Recombinant β-d-xylosidase from Thermobifida fusca TM51

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The subject of our investigations was a recombinant β-d-xylosidase (TfBXyl43) from Thermobifida fusca TM51 which was expressed in E. coli BL21DE3 and was purified to apparent homogeneity. The SDS-PAGE investigations demonstrated that the molecular weight of the monomer unit is 62.5 kDa but the native-PAGE studies indicated that the mass of the enzyme is 240–250 kDa which proves the presence of a characteristic homo oligomer quaternary structure in solution phase. Optimal parameters of the enzyme activity were at pH 6.0 and 50 °C. The enzyme showed little stability under pH 4.5 and above 60 °C. The substrate specificity investigations indicated that the TfBXyl43 is an exo-glycosidase, hydrolyzing only xylobiose and –triose from the nonreducing end. Besides the enzyme shows very high specificity on the glycon part of the substrate, since it can only hydrolyze β-d-xylopyranoside derivatives. The importance of hydrophobic interactions in the binding of the substrates are supported that the enzyme can hydrolize about four times more efficiently the artificial p-nitrophenyl-β-d-xylopyranoside substrate compared to the natural one, xylobiose. Furthermore we could detect transxylosidase activity both in the case of xylobiose and p-nitrophenyl-β-d-xylopyranoside donors which is the first example among the inverting β-d-xylosidases from T. fusca.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Béki E, Nagy I, Vanderleyden J, Jäger S, Kiss L, Fülöp L, Hornok L, Kukolya J (2003) Appl Env Microbiol 69(4):1944–1952

    Article  Google Scholar 

  2. Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Appl Microbiol Biotechnol 56:326–338

    Article  CAS  Google Scholar 

  3. Biely P (1985) Trends Biotechnol 3:286–290

    Article  CAS  Google Scholar 

  4. Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  5. Brunzelle JS, Jordan DB, McCaslin DR, Olczak A, Wawrzak Z (2008) Arch Biochem Biophys 474:157–166

    Article  CAS  Google Scholar 

  6. Brüx C, Ben-David A, Shallom-Shezifi D, Leon M, Niefind K, Shoham G, Shoham Y, Schomburg D (2006) J Mol Biol 359:97–109

    Article  Google Scholar 

  7. Coughlan MP, Hazlewood GP (1993) Biotechnol Appl Biochem 17:259–289

    CAS  Google Scholar 

  8. Dixon M (1953) Biochem J 55:170–171

    CAS  Google Scholar 

  9. Eneyskaya EV, Ivanen DR, Bobrov KS, Isaeva-Ivanova LS, Shabalin KA, Savel’ev AN, Golubev AM, Kulminskaya AA (2007) Arch Biochem Biophys 457:225–234

    Article  CAS  Google Scholar 

  10. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa

    Google Scholar 

  11. Gyémánt Gy, Tóth A, Bajza I, Kandra L, Lipták A (2001) Carbohydr Res 334:315–322

    Article  Google Scholar 

  12. Hartree EF (1972) Anal Biochem 48:422–427

    Article  CAS  Google Scholar 

  13. Henrissat B, Davies G (1997) Curr Opin Struct Biol 7:637–644

    Article  CAS  Google Scholar 

  14. Herrmann MC, Vrsanska M, Jurickova M, Hirsch J, Biely P, Kubicek CP (1997) Biochem J 321:375–381

    CAS  Google Scholar 

  15. Jordan DB, Li X-L, Dunlap CA, Whitehead TR, Cotta MA (2007) Appl Biochem Biotechnol 136–140:93–104

    Article  Google Scholar 

  16. Jordan DB (2008) Appl Biochem Biotechnol 146:137–149

    Article  CAS  Google Scholar 

  17. Katapodis P, Nerinckx W, Claeyssens M, Christacopoulos P (2006) Proc Biochem 41:2402–2409

    Article  CAS  Google Scholar 

  18. Kersters-Hilderson H, Loontiens FG, Claeyssens M, de Bruyne CK (1969) Eur J Biochem 7(434):441

    Google Scholar 

  19. Kiss T, Kiss L (2000) World J Microbiol Biotechnol 16(5):465–470

    Article  CAS  Google Scholar 

  20. Knob A, Terrasan CRF, Carmona EC (2010) World J Microbiol Biotechnol 26(3):389–407

    Article  CAS  Google Scholar 

  21. Laemmli UK (1970) Nature 227:680–685

    Article  CAS  Google Scholar 

  22. Leatherbarrow RJ GraFit (2001) Version 5.0. Erithacus Software Ltd., Horley, UK

  23. Moraïs S, Salama-Alber O, Barak Y, Hadar Y, Wilson DB, Lamed R, Shoham Y, Bayer EA (2012) J Biol Chem 287(12):9213–9221

    Article  Google Scholar 

  24. Nelson N (1944) J Biol Chem 153:375–381

    CAS  Google Scholar 

  25. Polizeli MLTM, Rizatti ACS, Monti R, Terenzi HF, Amorim DS (2005) Appl Microbiol Biotechnol 67:577–591

    Article  CAS  Google Scholar 

  26. Rizatti AC, Jorge JA, Terenzi HF, Rechia CGV, Polizeli MLTM (2001) J Ind Microbiol Biotechnol 26:156–160

    Article  Google Scholar 

  27. Saha BC (2003) J Ind Microbiol Biotechnol 30:279–291

    Article  CAS  Google Scholar 

  28. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  29. Saxena S, Fierobe HP, Guadin G, Guerlesquin F, Belaich JP (1995) Appl Environ Microbiol 61:3509–3512

    CAS  Google Scholar 

  30. Shallom D, Leon M, Bravman T, Ben-David A, Zaide G, Belakhov V, Shoham G, Schomburg D, Baasov T, Shoham Y (2005) Biochemistry 44:387–397

    Article  CAS  Google Scholar 

  31. Sinnott ML (1990) Chem Rev 90:1171–1202

    Article  CAS  Google Scholar 

  32. Smaali I, Rémond C, O’Donohue MJ (2006) Appl Microbiol Biotechnol 73:582–590

    Article  CAS  Google Scholar 

  33. Subramaniyan S, Prema P (2002) Crit Rev Biotechnol 22:33–46

    Article  CAS  Google Scholar 

  34. Spiridonov NA, Wilson DB (2001) Curr Microbiol 42:295–301

    CAS  Google Scholar 

  35. Sunna A, Antranikian G (1997) Crit Rev Biotechnol 17:39–67

    Article  CAS  Google Scholar 

  36. Teng C, Jia H, Yan Q, Zhou P, Jiang Z (2011) Biores Technol 102:1822–1830

    Article  CAS  Google Scholar 

  37. Tenkanen M, Luonteri E, Teleman A (1996) FEBS Lett 399:303–306

    Article  CAS  Google Scholar 

  38. Wagschal K, Heng C, Lee CC, Robertson GH, Orts WJ, Wong DW (2009) Appl Biochem Biotechnol 155(1–3):304–313

    CAS  Google Scholar 

  39. Yang JL, Lu G, Eriksson K-EL (1992) Tappi J 75:95–101

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank József Kukolya for the technical helping in the cloning process, to Teréz Barna for methodical advices, to Gyöngyi Gyémánt for the contribution in the MALDI-TOF measurments, to Gyula Batta for the support in 1H-NMR investigations and to Rita Somosi for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba Attila Fekete.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fekete, C.A., Kiss, L. Purification and Characterization of a Recombinant β-d-xylosidase from Thermobifida fusca TM51. Protein J 31, 641–650 (2012). https://doi.org/10.1007/s10930-012-9440-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-012-9440-7

Keywords

Navigation