The Protein Journal

, Volume 31, Issue 8, pp 641–650 | Cite as

Purification and Characterization of a Recombinant β-d-xylosidase from Thermobifida fusca TM51

  • Csaba Attila Fekete
  • László Kiss


The subject of our investigations was a recombinant β-d-xylosidase (TfBXyl43) from Thermobifida fusca TM51 which was expressed in E. coli BL21DE3 and was purified to apparent homogeneity. The SDS-PAGE investigations demonstrated that the molecular weight of the monomer unit is 62.5 kDa but the native-PAGE studies indicated that the mass of the enzyme is 240–250 kDa which proves the presence of a characteristic homo oligomer quaternary structure in solution phase. Optimal parameters of the enzyme activity were at pH 6.0 and 50 °C. The enzyme showed little stability under pH 4.5 and above 60 °C. The substrate specificity investigations indicated that the TfBXyl43 is an exo-glycosidase, hydrolyzing only xylobiose and –triose from the nonreducing end. Besides the enzyme shows very high specificity on the glycon part of the substrate, since it can only hydrolyze β-d-xylopyranoside derivatives. The importance of hydrophobic interactions in the binding of the substrates are supported that the enzyme can hydrolize about four times more efficiently the artificial p-nitrophenyl-β-d-xylopyranoside substrate compared to the natural one, xylobiose. Furthermore we could detect transxylosidase activity both in the case of xylobiose and p-nitrophenyl-β-d-xylopyranoside donors which is the first example among the inverting β-d-xylosidases from T. fusca.


Thermobifida fusca TM51 β-d-Xylosidase GH43 Industrial application Transferase activity Biosensor 



The authors wish to thank József Kukolya for the technical helping in the cloning process, to Teréz Barna for methodical advices, to Gyöngyi Gyémánt for the contribution in the MALDI-TOF measurments, to Gyula Batta for the support in 1H-NMR investigations and to Rita Somosi for her technical assistance.


  1. 1.
    Béki E, Nagy I, Vanderleyden J, Jäger S, Kiss L, Fülöp L, Hornok L, Kukolya J (2003) Appl Env Microbiol 69(4):1944–1952CrossRefGoogle Scholar
  2. 2.
    Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Appl Microbiol Biotechnol 56:326–338CrossRefGoogle Scholar
  3. 3.
    Biely P (1985) Trends Biotechnol 3:286–290CrossRefGoogle Scholar
  4. 4.
    Bradford MM (1976) Anal Biochem 72:248–254CrossRefGoogle Scholar
  5. 5.
    Brunzelle JS, Jordan DB, McCaslin DR, Olczak A, Wawrzak Z (2008) Arch Biochem Biophys 474:157–166CrossRefGoogle Scholar
  6. 6.
    Brüx C, Ben-David A, Shallom-Shezifi D, Leon M, Niefind K, Shoham G, Shoham Y, Schomburg D (2006) J Mol Biol 359:97–109CrossRefGoogle Scholar
  7. 7.
    Coughlan MP, Hazlewood GP (1993) Biotechnol Appl Biochem 17:259–289Google Scholar
  8. 8.
    Dixon M (1953) Biochem J 55:170–171Google Scholar
  9. 9.
    Eneyskaya EV, Ivanen DR, Bobrov KS, Isaeva-Ivanova LS, Shabalin KA, Savel’ev AN, Golubev AM, Kulminskaya AA (2007) Arch Biochem Biophys 457:225–234CrossRefGoogle Scholar
  10. 10.
    Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, TotowaGoogle Scholar
  11. 11.
    Gyémánt Gy, Tóth A, Bajza I, Kandra L, Lipták A (2001) Carbohydr Res 334:315–322CrossRefGoogle Scholar
  12. 12.
    Hartree EF (1972) Anal Biochem 48:422–427CrossRefGoogle Scholar
  13. 13.
    Henrissat B, Davies G (1997) Curr Opin Struct Biol 7:637–644CrossRefGoogle Scholar
  14. 14.
    Herrmann MC, Vrsanska M, Jurickova M, Hirsch J, Biely P, Kubicek CP (1997) Biochem J 321:375–381Google Scholar
  15. 15.
    Jordan DB, Li X-L, Dunlap CA, Whitehead TR, Cotta MA (2007) Appl Biochem Biotechnol 136–140:93–104CrossRefGoogle Scholar
  16. 16.
    Jordan DB (2008) Appl Biochem Biotechnol 146:137–149CrossRefGoogle Scholar
  17. 17.
    Katapodis P, Nerinckx W, Claeyssens M, Christacopoulos P (2006) Proc Biochem 41:2402–2409CrossRefGoogle Scholar
  18. 18.
    Kersters-Hilderson H, Loontiens FG, Claeyssens M, de Bruyne CK (1969) Eur J Biochem 7(434):441Google Scholar
  19. 19.
    Kiss T, Kiss L (2000) World J Microbiol Biotechnol 16(5):465–470CrossRefGoogle Scholar
  20. 20.
    Knob A, Terrasan CRF, Carmona EC (2010) World J Microbiol Biotechnol 26(3):389–407CrossRefGoogle Scholar
  21. 21.
    Laemmli UK (1970) Nature 227:680–685CrossRefGoogle Scholar
  22. 22.
    Leatherbarrow RJ GraFit (2001) Version 5.0. Erithacus Software Ltd., Horley, UKGoogle Scholar
  23. 23.
    Moraïs S, Salama-Alber O, Barak Y, Hadar Y, Wilson DB, Lamed R, Shoham Y, Bayer EA (2012) J Biol Chem 287(12):9213–9221CrossRefGoogle Scholar
  24. 24.
    Nelson N (1944) J Biol Chem 153:375–381Google Scholar
  25. 25.
    Polizeli MLTM, Rizatti ACS, Monti R, Terenzi HF, Amorim DS (2005) Appl Microbiol Biotechnol 67:577–591CrossRefGoogle Scholar
  26. 26.
    Rizatti AC, Jorge JA, Terenzi HF, Rechia CGV, Polizeli MLTM (2001) J Ind Microbiol Biotechnol 26:156–160CrossRefGoogle Scholar
  27. 27.
    Saha BC (2003) J Ind Microbiol Biotechnol 30:279–291CrossRefGoogle Scholar
  28. 28.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  29. 29.
    Saxena S, Fierobe HP, Guadin G, Guerlesquin F, Belaich JP (1995) Appl Environ Microbiol 61:3509–3512Google Scholar
  30. 30.
    Shallom D, Leon M, Bravman T, Ben-David A, Zaide G, Belakhov V, Shoham G, Schomburg D, Baasov T, Shoham Y (2005) Biochemistry 44:387–397CrossRefGoogle Scholar
  31. 31.
    Sinnott ML (1990) Chem Rev 90:1171–1202CrossRefGoogle Scholar
  32. 32.
    Smaali I, Rémond C, O’Donohue MJ (2006) Appl Microbiol Biotechnol 73:582–590CrossRefGoogle Scholar
  33. 33.
    Subramaniyan S, Prema P (2002) Crit Rev Biotechnol 22:33–46CrossRefGoogle Scholar
  34. 34.
    Spiridonov NA, Wilson DB (2001) Curr Microbiol 42:295–301Google Scholar
  35. 35.
    Sunna A, Antranikian G (1997) Crit Rev Biotechnol 17:39–67CrossRefGoogle Scholar
  36. 36.
    Teng C, Jia H, Yan Q, Zhou P, Jiang Z (2011) Biores Technol 102:1822–1830CrossRefGoogle Scholar
  37. 37.
    Tenkanen M, Luonteri E, Teleman A (1996) FEBS Lett 399:303–306CrossRefGoogle Scholar
  38. 38.
    Wagschal K, Heng C, Lee CC, Robertson GH, Orts WJ, Wong DW (2009) Appl Biochem Biotechnol 155(1–3):304–313Google Scholar
  39. 39.
    Yang JL, Lu G, Eriksson K-EL (1992) Tappi J 75:95–101Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Genetics and Applied Microbiology, Faculty of SciencesUniversity of DebrecenDebrecenHungary

Personalised recommendations