Advertisement

The Protein Journal

, Volume 31, Issue 3, pp 222–228 | Cite as

Characterization the Effects of Structure and Energetics of Intermolecular Interactions on the Oligomerization of Peptides in Aqueous 2, 2, 2-Trifluoroethanol via Circular Dichroism and Nuclear Magnetic Resonance Spectroscopy

  • Chang-Shin Lee
  • Wei-Cheng Tung
  • Wan-Chi Luo
Article

Abstract

Intermolecular interactions are of fundamental importance to fully comprehend a wide range of protein behaviors such as oligomerization, folding and recognition. Two peptides, NPY[18−36] and NPY[15−29], segmented from human neuropeptide Y (hNPY), were synthesized in this work to study the interaction between species. Information about intermolecular interactions was extracted from their oligomerizing behaviors. The results from CD and NMR showed that the addition of 2, 2, 2-trifluoroethanol (TFE) induces a stable helix in each peptides and an extended helix in NPY[18−36], formed between residues 30-36. Pulsed field gradient NMR data revealed that NPY[15−29] forms a larger oligomer at lower temperatures and continuously dissociates into the monomeric form with increasing temperature. NPY[18−36] was also found to undergo an enhanced interaction with TFE and a more favorable self-association at higher temperatures. We characterized the changes of oligomerized states with respect to temperature to infer the effects of entropy and interaction energy on the association-dissociation equilibrium. As shown by NPY[15−29], deletion of helical secondary structure or residues from the C-terminal segment may disrupt the solvation by TFE and results in entropy increase as the oligomer dissociates. Unlike that in NPY[15−29], the extended helix in NPY[18−36] improves the binding of TFE, and as a result, entropy is gained via the transfer of the TFE cluster from the interface between monomeric peptides into the bulk solvent. This observation suggests that the oligomerized state may be modulated by the entropy and energetics contributed by helical segments in the oligomerization process.

Keywords

Diffusion Intermolecular interaction Neuropeptide Oligomerization Pulsed field gradient NMR 

Abbreviations

CD

Circular dichroism

DSS

2,2-dimethyl-2-silapentane-5-sulfonate

hNPY

Human neuropeptide Y

NMR

Nuclear magnetic resonance

PFGNMR

Pulsed field gradient NMR

PYY

Peptide YY

PP

Pancreatic polypeptide

TFE

2, 2, 2-trifluoroethanol

Notes

Acknowledgments

This work was partially supported by grants NSC95-2113-M-032-010-MY2 from the National Science Council.

References

  1. 1.
    Altieri AS, Hilton DP, Byrd RA (1995) J Am Chem Soc 117:7566–7567CrossRefGoogle Scholar
  2. 2.
    Bader R, Bettio A, Beck-Sickinger AG, Zerbe O (2001) J Mol Biol 305:307–329CrossRefGoogle Scholar
  3. 3.
    Barnham KJ, Catalfamo F, Pallaghy PK, Howlett GJ, Norton RS (1999) Biochim Biophys Acta 1435:127–137CrossRefGoogle Scholar
  4. 4.
    Bax A, Davis DG (1985) J Magn Reson 65:355–360Google Scholar
  5. 5.
    Bettio A, Dinger MC, Beck-Sickinger AG (2002) Protein Sci 11:1834–1844CrossRefGoogle Scholar
  6. 6.
    Bodenhausen G, Kogler H, Ernst RR (1984) J Magn Reson 58:370–388Google Scholar
  7. 7.
    Brand T, Cabrita EJ, Berger S (2005) Prog Nucl Magn Reson Spectrosc 46:159–196CrossRefGoogle Scholar
  8. 8.
    Cabrele C, Beck-Sickinger AG (2000) J Pept Sci 6:97–122CrossRefGoogle Scholar
  9. 9.
    Chang PJ, Noelken ME, Kimmel JR (1980) Biochemistry 19:1844–1849CrossRefGoogle Scholar
  10. 10.
    Cowley DJ, Hoflack JM, Pelton JT, Saudek V (1992) Eur J Biochem 205:1099–1106CrossRefGoogle Scholar
  11. 11.
    Cozzolino S, Sanna MG, Valentini M (2008) Magn Reson Chem 46:S16–S23CrossRefGoogle Scholar
  12. 12.
    Darbon H, Bernassau JM, Deleuze C, Chenu J, Roussel A, Cambillau C (1992) Eur J Biochem 209:765–771CrossRefGoogle Scholar
  13. 13.
    Diaz MD, Fioroni M, Burger K, Berger S (2002) Chem Eur 8:1663–1669CrossRefGoogle Scholar
  14. 14.
    Dingley AJ, Mackay JP, Chapman BE, Morris MB, Kuchel PW, Hambly BD, King GF (1995) J Biomol NMR 6:321–328CrossRefGoogle Scholar
  15. 15.
    Dyson HJ, Wright PE (1991) Annu Rev Biophys Biophys Chem 20:519–538CrossRefGoogle Scholar
  16. 16.
    Finkelstein AV, Janin J (1989) J Protein Eng 3:1–3CrossRefGoogle Scholar
  17. 17.
    Fioroni M, Burger K, Mark AE, Roccatano D (2001) J Phys Chem B 105:10967–10975CrossRefGoogle Scholar
  18. 18.
    Fioroni M, Diaz MD, Burger K, Berger S (2002) J Am Chem Soc 124:7737–7744CrossRefGoogle Scholar
  19. 19.
    Gast K, Siemer A, Zirwer D, Damaschun G (2001) Eur Biophys J 30:273–283CrossRefGoogle Scholar
  20. 20.
    Hong DP, Hoshino M, Kuboi R, Goto Y (1999) J Am Chem Soc 121:8427–8433CrossRefGoogle Scholar
  21. 21.
    Ilyina E, Roongta V, Pan H, Woodward C, Mayo KH (1997) Biochemistry 36:3383–3388CrossRefGoogle Scholar
  22. 22.
    Khiat A, Labelle M, Boulanger Y (1998) J Pept Res 51:317–322CrossRefGoogle Scholar
  23. 23.
    Krishnan VV (1997) J Magn Reson 124:468–473CrossRefGoogle Scholar
  24. 24.
    Kumar A, Ernst RR, Wüthrich K (1980) Biochem Biophys Res Commun 95:1–6CrossRefGoogle Scholar
  25. 25.
    Lerch M, Kamimori H, Folkers G, Aguilar MI, Beck-Sickinger AG, Zerbe O (2005) Biochemistry 44:9255–9264CrossRefGoogle Scholar
  26. 26.
    Lerch M, Mayrhofer M, Zerbe O (2004) J Mol Biol 339:1153–1168CrossRefGoogle Scholar
  27. 27.
    Luo P, Baldwin RL (1997) Biochemistry 36:8413–8421CrossRefGoogle Scholar
  28. 28.
    MacPhee CE, Perugini MA, Sawyer WH, Howlett GJ (1997) FEBS Lett 416:265–268CrossRefGoogle Scholar
  29. 29.
    Marion D, Wüthrich K (1983) Biochem Biophys Res Commun 113:967–974CrossRefGoogle Scholar
  30. 30.
    Merutka G, Dyson HJ, Wright PE (1995) J Biomol NMR 5:14–24CrossRefGoogle Scholar
  31. 31.
    Mierke DF, Dürr H, Kessler H, Jung G (1992) Eur J Biochem 206:39–48CrossRefGoogle Scholar
  32. 32.
    Monks SA, Karagianis G, Howlett GJ, Norton RS (1996) J Biomol NMR 8:379–390CrossRefGoogle Scholar
  33. 33.
    Nordmann A, Blommers MJ, Fretz H, Arvinte T, Drake AF (1999) Eur J Biochem 261:216–226CrossRefGoogle Scholar
  34. 34.
    Othon CM, Kwon OH, Lin MM, Zewail AH (2009) Proc Natl Acad Sci USA 106:12593–12598CrossRefGoogle Scholar
  35. 35.
    Roccatano D, Colombo G, Fioroni M, Mark AE (2002) Proc Natl Acad Sci USA 99:12179–12184CrossRefGoogle Scholar
  36. 36.
    Rohl CA, Baldwin RL (1997) Biochemistry 36:8435–8442CrossRefGoogle Scholar
  37. 37.
    Roth CM, Neal BL, Lenhoff AM (1996) Biophys J 70:977–987CrossRefGoogle Scholar
  38. 38.
    Saudek V, Pelton J (1990) Biochemistry 29:4509–4515CrossRefGoogle Scholar
  39. 39.
    Tatemoto K, Carlquist M, Mutt V (1982) Nature 296:659–660CrossRefGoogle Scholar
  40. 40.
    Tidor B, Karplus M (1994) J Mol Biol 238:405–414CrossRefGoogle Scholar
  41. 41.
    Wishart DS, Sykes BD, Richards FM (1992) Biochemistry 31:1647–1651CrossRefGoogle Scholar
  42. 42.
    Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, New YorkGoogle Scholar
  43. 43.
    Xiao S, Wang C, Li J, Li F (2011) J Pept Sci 17:505–511CrossRefGoogle Scholar
  44. 44.
    Yao S, Howlett GJ, Norton RS (2000) J Biomol NMR 16:109–119CrossRefGoogle Scholar
  45. 45.
    Zimm BH, Bragg JK (1959) J Chem Phys 31:526–535CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of ChemistryTamkang UniversityTamsui Dist., New Taipei CityTaiwan, ROC

Personalised recommendations