The Protein Journal

, Volume 31, Issue 2, pp 109–119 | Cite as

Structural and Functional Properties of Glycerol-3-Phosphate Dehydrogenase from a Mammalian Hibernator

  • Marc de la Roche
  • Shannon N. Tessier
  • Kenneth B. Storey


Glycerol-3-phosphate dehydrogenase (G3PDH; E.C. was purified from liver and skeletal muscle of black-tailed prairie dogs (Cynomys ludivicianus), a hibernating species. Native and subunit molecular masses of the dimeric enzyme were 77 and 40 kD, respectively, and both tissues contained a single isozyme with a pI of 6.4. Kinetic parameters of purified G3PDH from prairie dog liver and muscle were characterized at 22 and 5 °C and compared with rabbit muscle G3PDH. Substrate affinities for hibernator muscle G3PDH were stable (NAD) or increased significantly (Km G3P and DHAP decreased) at low temperature whereas Km NAD and DHAP of rabbit G3PDH increased. Prairie dog G3PDH showed greater conservation of Km G3P over a wide temperature range as well as greater thermal stability and resistance to chemical denaturation by guanidine hydrochloride than the rabbit enzyme. In addition, using the protein sequence of the hibernating thirteen-lined ground squirrel (Ictidomys tridecemlineatus) and bioinformatics tools, the deduced protein structure of G3PDH was compared between heterothermic and homeothermic mammals. Structural and functional characteristics of G3PDH from the hibernating species would support enzyme function over a wide range of core body temperatures over cycles of torpor and arousal.


Torpor Gluconeogenesis from glycerol Fluorescence characterization Temperature effects on kinetic parameters Thermal stability 



Dihydroxyacetone phosphate


Ethylenediaminetetraacetic acid




Glycerol-3-phosphate dehydrogenase


High performance liquid chromatography


Sodium dodecyl sulfate polyacrylamide gel electrophoresis



We thank Henry J. Harlow, University of Wyoming for providing the prairie dog tissue samples for this study. Thanks also to J. M. Storey for critical commentary on the manuscript. Supported by a research grant from the N.S.E.R.C. Canada to KBS. SNT held a NSERC PGSD scholarship.


  1. 1.
    Arnold K, Bordoli L, Kopp J, Schwede T (2006) Bioinformatics 22:195–201CrossRefGoogle Scholar
  2. 2.
    Arnórsdóttir J, Sigtryggsdóttir AR, Thorbjarnardóttir SH, Kristjánsson MM (2009) J Biochem 145:325–329CrossRefGoogle Scholar
  3. 3.
    Benkert P, Biasini M, Schwede T (2011) Bioinformatics 27:343–350CrossRefGoogle Scholar
  4. 4.
    Berrada W, Naya A, Ouafik L, Bourhim N (2000) Comp Biochem Physiol B 125:439–449CrossRefGoogle Scholar
  5. 5.
    Berrada W, Naya A, Iddar A, Bourhim N (2002) Mol Cell Biochem 231:117–127CrossRefGoogle Scholar
  6. 6.
    Bortz W, Paul P, Haff AC, Holmes WL (1972) Glycerol turnover and oxidation in man. J Clin Invest 51:1537–1546CrossRefGoogle Scholar
  7. 7.
    Brooks SPJ (1992) BioTechniques 13:906–911Google Scholar
  8. 8.
    Dark J (2005) Annu Rev Nutr 25:469–497CrossRefGoogle Scholar
  9. 9.
    Dark J, Ruby NF (1993) In: Carey C, Florant G, Wunder BA, Horowitz B (eds) Life in the cold. Westview Press, Boulder, pp 167–174Google Scholar
  10. 10.
    Eftink MR (1994) Biophys J 66:482–501CrossRefGoogle Scholar
  11. 11.
    Galster WA, Morrison PR (1975) Am J Physiol 218:1228–1232Google Scholar
  12. 12.
    Geiser F (2004) Annu Rev Physiol 66:239–274CrossRefGoogle Scholar
  13. 13.
    Green CJ, Brosnan JT, Fuller BJ, Lowry M, Stubbs M, Ross BD (1984) Comp Biochem Physiol B 79:167–171CrossRefGoogle Scholar
  14. 14.
    Guex N, Peitsch MC (1997) Electrophoresis 18:2714–2723CrossRefGoogle Scholar
  15. 15.
    Harlow HJ, Menkens GE (1986) Can J Zool 64:793–796CrossRefGoogle Scholar
  16. 16.
    Lehmer EM, Savage LT, Antolin MF, Biggins DE (2006) Physiol Biochem Zool 79:454–467CrossRefGoogle Scholar
  17. 17.
    McLoughlin DJ, MacQuarrie R (1978) Biochem Biophys Acta 527:204–211Google Scholar
  18. 18.
    Owen DE, Felig P, Morgan AP, Wahren J, Cahill GF (1969) Liver and kidney metabolism during prolonged starvation. J Clin Invest 48:574–583CrossRefGoogle Scholar
  19. 19.
    Robinson-Rechavi M, Godzik A (2005) Structure 13:857–860CrossRefGoogle Scholar
  20. 20.
    Sacchetta P, Aceto A, Bucciarelli T, Dragani B, Santarone S, Allocati N, Di-Ilio C (1993) Eur J Biochem 215:741–745CrossRefGoogle Scholar
  21. 21.
    Schwede T, Kopp J, Guex N, Peitsch MC (2003) Nucleic Acids Res 31:3381–3385CrossRefGoogle Scholar
  22. 22.
    Storey KB (1997) Comp Biochem Physiol A 118:1115–1124CrossRefGoogle Scholar
  23. 23.
    Storey KB, Storey JM (2010) Adv Clin Chem 52:77–108CrossRefGoogle Scholar
  24. 24.
    Vesterberg O (1971) In: Colowick SP, Kaplan NO (eds) Methods in enzymology. Academic Press, New York, pp 389–412Google Scholar
  25. 25.
    Wallace GM, Pfeiffer EW (1992) Comp Biochem Physiol A 101:853–855CrossRefGoogle Scholar
  26. 26.
    White HB (1971) Arch Biochem Biophys 147:123–128CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Marc de la Roche
    • 2
  • Shannon N. Tessier
    • 1
  • Kenneth B. Storey
    • 1
  1. 1.Departments of Biology and ChemistryCarleton UniversityOttawaCanada
  2. 2.MRC Laboratory of Molecular BiologyCambridge,UK

Personalised recommendations