The Protein Journal

, Volume 31, Issue 1, pp 35–42 | Cite as

Cloning and Characterization of AKR4C14, a Rice Aldo–Keto Reductase, from Thai Jasmine Rice

  • Rawint Narawongsanont
  • Suthamma Kabinpong
  • Budsakorn Auiyawong
  • Chonticha Tantitadapitak


Aldo–keto reductase (AKR) is an enzyme superfamily whose members are involved in the metabolism of aldehydes/ketones. The AKR4 subfamily C (AKR4C) is a group of aldo–keto reductases that are found in plants. Some AKR4C(s) in dicot plants are capable of metabolizing reactive aldehydes whereas, such activities have not been reported for AKR4C(s) from monocot species. In this study, we have screened Indica rice genome for genes with significant homology to dicot AKR4C(s) and identified a cluster of putative AKR4C(s) located on the Indica rice chromosome I. The genes including OsI_04426, OsI_04428 and OsI_04429 were successfully cloned and sequenced by qRT-PCR from leaves of Thai Jasmine rice (KDML105). OsI_04428, later named AKR4C14, was chosen for further studies because it shares highest homology to the dicot AKR4C(s). The bacterially expressed recombinant protein of AKR4C14 was successfully produced as a MBP fusion protein and his-tagged protein. The recombinant AKR4C14 were capable of metabolizing sugars and reactive aldehydes i.e. methylglyoxal, a toxic by-product of the glycolysis pathway, glutaraldehyde, and trans-2-hexenal, a natural reactive 2-alkenal. AKR4C14 was highly expressed in green tissues, i.e. leaf sheets and stems, whereas flowers and roots had a significantly lower level of expression. These findings indicated that monocot AKR4C(s) can metabolize reactive aldehydes like the dicot AKR4C(s) and possibly play a role in detoxification mechanism of reactive aldehydes.


Aldo–keto reductase AKR4C14 Thai jasmine rice (Oryza sativa L. var. KDML 105) Reactive aldehydes AKR4C(s) 



Aldo-keto reductase


Maltose-binding protein




Coding sequence






Ethylenediaminetetraacetic acid


Glutathione S-transferase



We thank Dr. Jon P. Ride (University of Birmingham) and Prof. Pradit Pongtongkam (Kasetsart University) for fruitful discussion. This work was funded by the Kasetsart University Research and Development Institute (KURDI), and the Faculty of Science, Kasetsart University.

Supplementary material

10930_2011_9371_MOESM1_ESM.docx (384 kb)
Supplementary material 1 (DOCX 384 kb)


  1. 1.
    Aida K, Tawata M, Ikegishi Y, Onaya T (1999) Endocrinology 140(2):609–617CrossRefGoogle Scholar
  2. 2.
    Bagnasco SM, Uchida S, Balaban RS, Kador PF, Burg MB (1987) Proc Natl Acad Sci USA 84(6):1718–1720CrossRefGoogle Scholar
  3. 3.
    Bartels D, Engelhardt K, Roncarati R, Schneider K, Rotter M, Salamini F (1991) EMBO J 10(5):1037–1043Google Scholar
  4. 4.
    Bladier C, Carrier P, Chagvardieff P (1994) Plant Physiol 106(3):941–947Google Scholar
  5. 5.
    Burge C, Karlin S (1997) J Molecular Biol 268(1):78–94. doi: 10.1006/jmbi.1997.0951 CrossRefGoogle Scholar
  6. 6.
    Chehab EW, Raman G, Walley JW, Perea JV, Banu G, Theg S, Dehesh K (2006) Plant Physiol 141(1):121–134. doi: 10.1104/pp.106.078592 CrossRefGoogle Scholar
  7. 7.
    de Sousa SM, Rosselli LK, Kiyota E, da Silva JC, Souza GH, Peroni LA, Stach-Machado DR, Eberlin MN, Souza AP, Koch KE, Arruda P, Torriani IL, Yunes JA (2009) Plant Physiol Biochem 47(2):98–104CrossRefGoogle Scholar
  8. 8.
    Desmond JC, Mountford JC, Drayson MT, Walker EA, Hewison M, Ride JP, Luong QT, Hayden RE, Vanin EF, Bunce CM (2003) Cancer Res 63(2):505–512Google Scholar
  9. 9.
    Di Luccio E, Elling RA, Wilson DK (2006) Biochem J 400(1):105–114CrossRefGoogle Scholar
  10. 10.
    Ellis EM, Judah DJ, Neal GE, Hayes JD (1993) Proc Natl Acad Sci USA 90(21):10350–10354CrossRefGoogle Scholar
  11. 11.
    Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein Identification and Analysis Tools on the ExPASyServer. In: Walker JM (ed) The Proteomics Protocols Handbook. Humana Press, Totowa, NJGoogle Scholar
  12. 12.
    Gavidia I, Perez-Bermudez P, Seitz HU (2002) Eur J Biochem 269(12):2842–2850CrossRefGoogle Scholar
  13. 13.
    Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Adv Bioinform 2008:420747. doi: 10.1155/2008/420747 Google Scholar
  14. 14.
    Hyndman D, Bauman DR, Heredia VV, Penning TM (2003) Chem Biol Interact 143–144:621–631CrossRefGoogle Scholar
  15. 15.
    Ireland LS, Harrison DJ, Neal GE, Hayes JD (1998) Biochem J 332(Pt 1):21–34Google Scholar
  16. 16.
    Ishikura S, Horie K, Sanai M, Matsumoto K, Hara A (2005) Biol Pharm Bull 28(6):1075–1078CrossRefGoogle Scholar
  17. 17.
    Jez JM, Bennett MJ, Schlegel BP, Lewis M, Penning TM (1997) Biochem J 326(Pt 3):625–636Google Scholar
  18. 18.
    Jez JM, Flynn TG, Penning TM (1997) Biochem Pharmacol 54(6):639–647CrossRefGoogle Scholar
  19. 19.
    Kapust RB, Waugh DS (1999) Protein Sci 8(8):1668–1674CrossRefGoogle Scholar
  20. 20.
    Kolb NS, Hunsaker LA, Vander Jagt DL (1994) Mol Pharmacol 45(4):797–801Google Scholar
  21. 21.
    Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Bioinformatics 23(21):2947–2948. doi: 10.1093/bioinformatics/btm404 CrossRefGoogle Scholar
  22. 22.
    Lee SP, Chen TH (1993) Plant Physiol 101(3):1089–1096CrossRefGoogle Scholar
  23. 23.
    Li B, Foley ME (1995) Plant Mol Biol 29(4):823–831CrossRefGoogle Scholar
  24. 24.
    Mano J, Miyatake F, Hiraoka E, Tamoi M (2009) Planta 230(4):639–648. doi: 10.1007/s00425-009-0964-9 CrossRefGoogle Scholar
  25. 25.
    Mundree SG, Whittaker A, Thomson JA, Farrant JM (2000) Planta 211(5):693–700CrossRefGoogle Scholar
  26. 26.
    Oberschall A, Deak M, Torok K, Sass L, Vass I, Kovacs I, Feher A, Dudits D, Horvath GV (2000) Plant J 24(4):437–446CrossRefGoogle Scholar
  27. 27.
    Penning TM, Burczynski ME, Jez JM, Hung CF, Lin HK, Ma H, Moore M, Palackal N, Ratnam K (2000) Biochem J 351(Pt 1):67–77CrossRefGoogle Scholar
  28. 28.
    Petrash JM (2004) Cell Mol Life Sci 61(7–8):737–749CrossRefGoogle Scholar
  29. 29.
    Roncarati R, Salamini F, Bartels D (1995) Plant J 7(5):809–822CrossRefGoogle Scholar
  30. 30.
    Simpson PJ, Tantitadapitak C, Reed AM, Mather OC, Bunce CM, White SA, Ride JP (2009) J Mol Biol 392(2):465–480CrossRefGoogle Scholar
  31. 31.
    Srivastava S, Chandra A, Bhatnagar A, Srivastava SK, Ansari NH (1995) Biochem Biophys Res Commun 217(3):741–746CrossRefGoogle Scholar
  32. 32.
    Srivastava S, Dixit BL, Cai J, Sharma S, Hurst HE, Bhatnagar A, Srivastava SK (2000) Free Radic Biol Med 29(7):642–651CrossRefGoogle Scholar
  33. 33.
    Turoczy Z, Kis P, Torok K, Cserhati M, Lendvai A, Dudits D, Horvath GV (2011) Plant Mol Biol 75(4–5):399–412. doi: 10.1007/s11103-011-9735-7 CrossRefGoogle Scholar
  34. 34.
    Vander Jagt DL, Robinson B, Taylor KK, Hunsaker LA (1992) J Biol Chem 267(7):4364–4369Google Scholar
  35. 35.
    Vander Jagt DL, Hassebrook RK, Hunsaker LA, Brown WM, Royer RE (2001) Chem Biol Interact 130–132(1–3):549–562CrossRefGoogle Scholar
  36. 36.
    Weber J, Kayser A, Rinas U (2005) Microbiology 151(Pt 3):707–716CrossRefGoogle Scholar
  37. 37.
    Welle R, Schroder G, Schiltz E, Grisebach H, Schroder J (1991) Eur J Biochem 196(2):423–430CrossRefGoogle Scholar
  38. 38.
    Yadav SK, Singla-Pareek SL, Ray M, Reddy MK, Sopory SK (2005) Biochem Biophys Res Commun 337(1):61–67CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Rawint Narawongsanont
    • 1
  • Suthamma Kabinpong
    • 1
  • Budsakorn Auiyawong
    • 1
  • Chonticha Tantitadapitak
    • 1
  1. 1.Department of Biochemistry, Faculty of ScienceKasetsart UniversityBangkokThailand

Personalised recommendations