Skip to main content
Log in

Influence of pK a Shifts on the Calculated Dipole Moments of Proteins

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The protein dipole moment is a low-resolution parameter that characterizes the second-order charge organization of a biomolecule. Theoretical approaches to calculate protein dipole moments rely on pK a values, which are either computed individually for each ionizable residue or obtained from model compounds. The influence of pK a shifts are evaluated first by comparing calculated and measured dipole moments of β-lactoglobulin. Second, calculations are made on a dataset of 66 proteins from the Protein Data Bank, and average differences are determined between dipole moments calculated with model pK as, pK as derived using a Poisson–Boltzmann approach, and empirically-calculated pK as. Dipole moment predictions that neglect pK a shifts are consistently larger than predictions in which they are included. The importance of pK a shifts are observed to vary with protein size, internal permittivity, and solution pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

β-Lg:

β-Lactoglobulin

\( \Updelta {\text{p}}K_{\text{a}}^{\text{calc}} \) :

Calculated pK a shift

\( \mu_{{}} \) :

Dipole moment

\( \mu_{\text{m}} \) :

Dipole moment calculated using \( {\text{p}}K_{\text{a}}^{\text{m}} {\text{s}} \)

\( \mu_{\text{pb}} \) :

Dipole moment calculated using \( {\text{p}}K_{\text{a}}^{\text{pb}} {\text{s}} \)

B :

Estimation bias

D :

Average percentage difference

DNA:

Deoxyribonucleic acid

NMR:

Nuclear magnetic resonance

PDB:

Protein data bank

pI:

Isoelectric point

\( {\text{p}}K_{\text{a}}^{\text{calc}} \) :

Calculated pK a

\( {\text{p}}K_{\text{a}}^{\text{e}} \) :

Empirically-calculated pK a

\( {\text{p}}K_{\text{a}}^{\text{m}} \) :

Model pK a

\( {\text{p}}K_{\text{a}}^{\text{pb}} \) :

PoissonBoltzmann calculated pK a

RNase A:

Ribonuclease A

Z :

Formal charge of the ion

References

  1. Ahmad S, Sarai A (2004) J Mol Biol 341:65–71

    Article  CAS  Google Scholar 

  2. Antosiewicz J, Porschke D (1989) Biochem US 28:10072–10078

    Article  CAS  Google Scholar 

  3. Bashford D, Karplus M (1990) Biochem US 29:10219–10225

    Article  CAS  Google Scholar 

  4. Beroza P, Case DA (1996) J Phys Chem US 100:20156–20163

    Article  CAS  Google Scholar 

  5. Cohn EJ, Edsall JT (1943) Proteins, amino acids and peptides. Reinhold Publishing Corporation

  6. Creighton TE (1993) Proteins: structures and molecular properties, 2nd edn. W H Freeman, New York

    Google Scholar 

  7. Davies MN, Toseland CP, Moss DS, Flower DR (2006) BMC Biochem 7:18

    Article  Google Scholar 

  8. Demchuk E, Wade RC (1996) J Phys Chem US 100:17373–17387

    Article  CAS  Google Scholar 

  9. Diamond R (1974) J Mol Biol 82:371–391

    Article  CAS  Google Scholar 

  10. Dwyer JJ, Gittis AG, Karp DA, Lattman EE, Spencer DS, Stites WE, Garcia-Moreno B (2000) Biophys J 79:1610–1620

    Article  CAS  Google Scholar 

  11. Felder CE, Prilusky J, Silman I, Sussman JL (2007) Nucleic Acids Res 35:W512–W521

    Article  Google Scholar 

  12. Fogolari F, Brigo A, Molinari H (2002) J Mol Recognit 15:377–392

    Article  CAS  Google Scholar 

  13. Georgescu RE, Alexov EG, Gunner MR (2002) Biophys J 83:1731–1748

    Article  CAS  Google Scholar 

  14. Gordon JC, Myers JB, Folta T, Shoja V, Heath LS, Onufriev A (2005) Nucleic Acids Res 33:W368–W371

    Article  CAS  Google Scholar 

  15. Grant JA, Pickup BT, Nicholls A (2001) J Comput Chem 22:608–640

    Article  CAS  Google Scholar 

  16. Hasselbalch KA (1916) Biochem US 78:112–144

    CAS  Google Scholar 

  17. He Y, Xu J, Pan XM (2007) Proteins 69:75–82

    Article  CAS  Google Scholar 

  18. Jean-Charles A, Nicholls A, Sharp K, Honig B, Tempczyk A, Hendrickson TF, Still WC (1991) J Am Chem Soc 113:1454–1455

    Article  CAS  Google Scholar 

  19. Kantardjiev AA, Atanasov BP (2009) Nucleic Acids Res 37:W422–W427

    Article  CAS  Google Scholar 

  20. Keefe SE, Grant EH (1974) Phys Med Biol 19:701–707

    Article  CAS  Google Scholar 

  21. Keszthelyi L (2002) Colloid Surf A 209:173–183

    Article  CAS  Google Scholar 

  22. Kieseritzky G, Knapp EW (2008) J Comput Chem 29:2575–2581

    Article  CAS  Google Scholar 

  23. Kuwata K, Hoshino M, Forge V, Era S, Batt CA, Goto Y (1999) Protein Sci 8:2541–2545

    Article  CAS  Google Scholar 

  24. Li H, Robertson AD, Jensen JH (2005) Proteins 61:704–721

    Article  CAS  Google Scholar 

  25. Liang ZX, Kurnikov IV, Nocek JM, Mauk AG, Beratan DN, Hoffman BM (2004) J Am Chem Soc 126:2785–2798

    Article  CAS  Google Scholar 

  26. MacKenzie H (1971) Milk proteins: chemistry and molecular biology. Academic Press, New York

    Google Scholar 

  27. Madura JD, Briggs JM, Wade RC, Davis ME, Luty BA, Ilin A, Antosiewicz J, Gilson MK, Bagheri B, Scott LR, Mccammon JA (1995) Comput Phys Commun 91:57–95

    Article  CAS  Google Scholar 

  28. Mehler EL, Guarnieri F (1999) Biophys J 75:3–22

    Article  Google Scholar 

  29. Mellor BL, Cortes EC, Busath DD, Mazzeo BA (2011) J Phys Chem B 115:2205–2213

    Article  CAS  Google Scholar 

  30. Mozo-Villarias A, Cedano J, Querol E (2003) Protein Eng 16:279–286

    Article  CAS  Google Scholar 

  31. Nielsen JE (2007) J Mol Graph Model 25:691–699

    Article  CAS  Google Scholar 

  32. Nielsen JE, Vriend G (2001) Proteins 43:403–412

    Article  CAS  Google Scholar 

  33. Nimrod G, Schushan M, Szilágyi A, Leslie C, Ben-Tal N (2010) Bioinformatics 26:692–693

    Article  CAS  Google Scholar 

  34. Nimrod G, Szilagyi A, Leslie C, Ben-Tal N (2009) J Mol Biol 387:1040–1053

    Article  CAS  Google Scholar 

  35. Nozaki Y, Tanford C (1967) Method Enzymol 11:715–734

    Article  CAS  Google Scholar 

  36. Osapay K, Theriault Y, Wright PE, Case DA (1994) J Mol Biol 244:183–197

    Article  CAS  Google Scholar 

  37. Perutz MF (1978) Science 201:1187–1191

    Article  CAS  Google Scholar 

  38. Sharp KA, Honig B (1990) Annu Rev Biophys Bio 19:301–332

    Article  CAS  Google Scholar 

  39. Smyth CP (1955) Dielectric behavior and structure: dielectric constant and loss, dipole moment and molecular structure. McGraw Hill, New York

    Google Scholar 

  40. South GP, Grant EH (1972) Proc R Soc Lond A Mat 328:371–387

    Article  CAS  Google Scholar 

  41. Stanton CL, Houk KN (2001) J Chem Theory Comput 4:951–966

    Article  Google Scholar 

  42. Takashima S (2001) Biopolymers 58:398–409

    Article  CAS  Google Scholar 

  43. Tartaglia GG, Cavalli A, Pellarin R, Caflisch A (2004) Protein Sci 13:1939–1941

    Article  CAS  Google Scholar 

  44. Thurlkill RL, Grimsley GR, Scholtz JM, Pace CN (2006) Protein Sci 15:1214–1218

    Article  CAS  Google Scholar 

  45. Warshel A, Aqvist J (1991) Annu Rev Biophys Bio 20:267–298

    Article  CAS  Google Scholar 

  46. Warshel A, Russell ST (1984) Q Rev Biophys 17:283–422

    Article  CAS  Google Scholar 

  47. Wlodawer A, Borkakoti N, Moss DS, Howlin B (1986) Acta Crystallogr B 42:379–387

    Article  Google Scholar 

  48. Yang AS, Honig B (1993) J Mol Biol 231:459–474

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett L. Mellor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mellor, B.L., Khadka, S., Busath, D.D. et al. Influence of pK a Shifts on the Calculated Dipole Moments of Proteins. Protein J 30, 490–498 (2011). https://doi.org/10.1007/s10930-011-9355-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-011-9355-8

Keywords

Navigation