Advertisement

The Protein Journal

, Volume 30, Issue 3, pp 149–158 | Cite as

Glycation of the Muscle-Specific Enolase by Reactive Carbonyls: Effect of Temperature and the Protection Role of Carnosine, Pirydoxamine and Phosphatidylserine

  • Jadwiga Pietkiewicz
  • Agnieszka Bronowicka-Szydełko
  • Katarzyna Dzierzba
  • Regina Danielewicz
  • Andrzej Gamian
Article

Abstract

Reactive carbonyls such as 4-hydroxy-2-nonenal (4-HNE), trans-2-nonenal (T2 N), acrolein (ACR) can react readily with nucleophilic protein sites forming of advanced glycation end-products (AGE). In this study, the human and pig muscle-specific enolase was used as a protein model for in vitro modification by 4-HNE, T2 N and ACR. While the human enolase interaction with reactive α-oxoaldehyde methylglyoxal (MOG) was demonstrated previously, the effect of 4-HNE, T2 N and ACR has not been identified yet. Altering in catalytic function were observed after the enzyme incubation with these active compounds for 1–24 h at 25, 37 and 45 °C. The inhibition degree of enolase activity occurred in following order: 4-HNE > ACR > MOG > T2 N and inactivation of pig muscle-specific enolase was more effective relatively to human enzyme. The efficiency of AGE formation depends on time and incubation temperature with glycating agent. More amounts of insoluble AGE were formed at 45 °C. We found that pirydoxamine and natural dipeptide carnosine counteracted AGE formation and protected enolase against the total loss of catalytic activity. Moreover, we demonstrated for the first time that phosphatidylserine may significantly protect enolase against decrease of catalytic activity in spite of AGE production.

Keywords

Muscle-specific enolase Reactive aldehydes Advanced glycation end-products Protective agents 

Abbreviations

ACR

Acrolein

4-HNE

4-hydroxy-2-nonenal

MOG

Methylglyoxal

T2 N

Trans-2-nonenal

PBS

Phosphate buffered saline pH 7.4

Notes

Acknowledgments

This study was supported by Grant No 3564/B/P01/2007/33 from the Ministry of Science and Higher Education and by Wrocław Research Center EIT + under the project “Biotechnologies and advanced medical technologies—BioMed” (POIG.01.01.02-02-003/08-00) financed from the European Regional Development Fund (Operational Programme Innovative Economy, 1.1.2).

References

  1. 1.
    Adrover M, Vilanova B, Frau J, Muňoz F, Donoso J (2008) Bioorg Med Chem 16:5557–5569CrossRefGoogle Scholar
  2. 2.
    Ahmed N, Thornalley PJ (2007) Diabetes Obes Metab 9:233–245CrossRefGoogle Scholar
  3. 3.
    Bacot S, Bernoud-Hubac N, Chantegrel B, Deshayes C, Doutheau A, Ponsin G, Lagarde M, Guichardant M (2007) J Lipid Res 48:816–825CrossRefGoogle Scholar
  4. 4.
    Bednarz-Misa I, Pietkiewicz J, Banaś T, Gamian A (2009) Adv Clin Exp Med 18:71–78Google Scholar
  5. 5.
    Cai J, Bhatnagar A, Pierce WM (2009) Chem Res Toxocol 22:708–716CrossRefGoogle Scholar
  6. 6.
    Carini M, Aldini G, Facino RM (2004) Mass Spectrom Rev 4:281–305CrossRefGoogle Scholar
  7. 7.
    Chaplen FW, Fahl WE, Cameron DC (1998) Proc Natl Acad Sci USA 95:5533–5538CrossRefGoogle Scholar
  8. 8.
    Donaldson C, Taatjes DJ, Zile M, Palmer B, VanBuren P, Spinale F, Maughan D, Von Turkovich M, Bishop N, LeWinter MM (2010) Histochem Cell Biol 134:23–30CrossRefGoogle Scholar
  9. 9.
    Esterbauer H, Schaur RJ, Zollner H (1991) Free Radic Biol Med 11:81–128CrossRefGoogle Scholar
  10. 10.
    Finkelstein EI, Ruben J, Koot CW, Hristova M, van der Vliet A (2005) Am J Physiol Lung Cell Mol Physiol 289:L1019–L1028CrossRefGoogle Scholar
  11. 11.
    Gomes RA, Oliveira LM, Silva M, Ascenso C, Quintas A, Costa G, Coelho AV, Sousa Silva M, Ferreira AE, Ponces Freire A, Cordeiro C (2008) Biochem J 416:317–326CrossRefGoogle Scholar
  12. 12.
    Gomes RA, Miranda HV, Silva MS, Grace G, Coelho AV, Fereira AE, Cordeiro C, Freire AP (2006) FEBS J 273:5273–5287CrossRefGoogle Scholar
  13. 13.
    Grimsrud PA, Xie H, Griffin TJ, Bernlohr DA (2008) J Biol Chem 283:21837–21841CrossRefGoogle Scholar
  14. 14.
    Guichardant M, Bernoud-Hubac N, Chantegrel B, Deshayes C, Lagarde M (2002) Prostaglandins Leukot Essent Fatty Acids 67:147–149CrossRefGoogle Scholar
  15. 15.
    Gutowicz J, Terlecki G (2003) Cell Mol Biol Lett 8:667–680Google Scholar
  16. 16.
    Hipkiss AR, Brownson C, Carrier MJ (2001) Mech Ageing Dev 122:1431–1445CrossRefGoogle Scholar
  17. 17.
    Ishino K, Wakita C, Takahiro Shibata T, Toyokuni S, Machida S, Matsuda S, Matsuda T, Uchida K (2010) J Biol Chem 285:15302–15313CrossRefGoogle Scholar
  18. 18.
    Kalapos MP (2008) Chem Biol Interact 171:251–271CrossRefGoogle Scholar
  19. 19.
    Kang HJ, Jung SK, Kim SJ, Chung SJ (2008) Acta Crystallogr D Biol Crystallogr 64:651–657CrossRefGoogle Scholar
  20. 20.
    Kang JH (2003) Moll Cells 15:194–199Google Scholar
  21. 21.
    Kuhla B, Haase C, Flach K, Lüth HJ, Arendt T, Münch G (2007) J Biol Chem 282:6984–6991CrossRefGoogle Scholar
  22. 22.
    Laemmli K (1977) Nature 227:680–685CrossRefGoogle Scholar
  23. 23.
    Lankin VZ, Tikhaze AK, Kapel’ko VI, Shepel’kova GS, Shumaev KB, Panasenko OM, Konovalova GG, Belenkov YN (2007) Biochemistry (Mosc) 72: 1081–1090Google Scholar
  24. 24.
    Lee HJ, Howell SK, Sanford RJ, Beisswenger PJ (2005) Ann N Y Acad Sci 1043:135–145CrossRefGoogle Scholar
  25. 25.
    Liu Y, Xu G, Sayre CM (2003) Chem Res Toxicol 16:1589–1597CrossRefGoogle Scholar
  26. 26.
    Lo TWC, Westwood ME, McLellan AC, Selwood T, Thornalley P (1994) J Biol Chem 269:32299–32305Google Scholar
  27. 27.
    Lopachin RM, Gavin T, Petersen DR, Barber DS (2009) Chem Res Toxicol 22:1499–1508CrossRefGoogle Scholar
  28. 28.
    Meli M, Granouillet OR, Reynaud E, Chamson A, Frey J, Perier C (2003) J Protein Chem 22:521–525CrossRefGoogle Scholar
  29. 29.
    Mendez DL, Jensen RA, McElroy LA, Pena JM, Esquerra RM (2005) Arch Biochem Biophys 444:92–99CrossRefGoogle Scholar
  30. 30.
    Merkulova T, Lucas M, Jabet C, Lamande N, Rouzeau D, Gros F, Lazar M, Keller A (1997) Biochem J 323:791–800Google Scholar
  31. 31.
    Morgan PE, Dean RT, Davies MJ (2002) Arch Biochem Biophys 403:259–269CrossRefGoogle Scholar
  32. 32.
    Nass N, Bartling B, Navarette Santos A, Scheubel RJ, Börgermann J, Silber RE, Simm A (2007) Z Gerontol Geriat 40:349–356CrossRefGoogle Scholar
  33. 33.
    Pancholi V (2001) Cell Mol Life Sci 58:902–920CrossRefGoogle Scholar
  34. 34.
    Piast M, Kustrzeba-Wójcicka I, Matusiewicz M, Banaś T (2005) Acta Biochim Pol 52:507–513Google Scholar
  35. 35.
    Pietkiewicz J, Gamian A, Staniszewska M, Danielewicz R (2009) J Enzyme Inhib Med Chem 24:356–364CrossRefGoogle Scholar
  36. 36.
    Pietkiewicz J, Seweryn E, Bartyś A, Gamian A (2008) Postepy Hig Med Dosw (Online) 62: 511–523Google Scholar
  37. 37.
    Poli G, Schaur RJ, Siems WG, Leonarduzzi G (2008) Med Res Rev 28:569–631CrossRefGoogle Scholar
  38. 38.
    Poyner RR, Cleland WW, Reed GH (2001) Biochemistry 4:8009–8017CrossRefGoogle Scholar
  39. 39.
    Reddy VP, Beyaz A (2006) Drug Discovery Today 11:646–654CrossRefGoogle Scholar
  40. 40.
    Schaur RJ (2003) Mol Aspects Med 24:149–155CrossRefGoogle Scholar
  41. 41.
    Seweryn E, Pietkiewicz J, Szamborska A, Gamian A (2007) Postepy Hig Med Dosw (Online) 61:672–682Google Scholar
  42. 42.
    Sliman SM, Eubank TD, Kotha SR, Kuppusamy ML, Sherwani SI, Butler ES, Kuppusamy P, Roy S, Marsh CB, Stern DM, Parinandi NL (2010) Mol Cell Biochem 333:9–26CrossRefGoogle Scholar
  43. 43.
    Stevens JF, Maier CS (2008) Mol Nutr Food Res 52:7–25CrossRefGoogle Scholar
  44. 44.
    Takino J, Kobayashi Y, Takeuchi M (2010) J Gastroenterol 45:646–655CrossRefGoogle Scholar
  45. 45.
    Talukdar D, Chaudhuri BS, Ray M, Ray S (2009) Biochemistry (Moscow) 74: 1059–1069Google Scholar
  46. 46.
    Terlecki G, Czapinska E, Hotowy K (2007) Cell Mol Biol Lett 12:378–395CrossRefGoogle Scholar
  47. 47.
    Tessier FJ (2010) Pathol Biol (Paris) 58: 214–219Google Scholar
  48. 48.
    Thornalley PJ (2005) Ann NY Acad Sci 1043:111–117CrossRefGoogle Scholar
  49. 49.
    Thorpe SR, Baynes JW (2003) Amino Acids 25:275–281CrossRefGoogle Scholar
  50. 50.
    Uchida K (2003) Prog Lipid Res 42:318–343CrossRefGoogle Scholar
  51. 51.
    Uchida K (2000) Free Radic Biol Med 28:1685–1696CrossRefGoogle Scholar
  52. 52.
    Uchida K (1999) Trends Cardiovasc Med 9:109–113CrossRefGoogle Scholar
  53. 53.
    Ulrich A, Cerami A (2001) Recent Progr Horm Res 56:1–21CrossRefGoogle Scholar
  54. 54.
    Voziyan PA, Hudson BG (2005) Cell Mol Life Sci 62:1671–1681CrossRefGoogle Scholar
  55. 55.
    Wa C, Cerny RL, Clarke WA, Hage DS (2007) Clin Chim Acta 385:48–60CrossRefGoogle Scholar
  56. 56.
    Westwood ME, Thornalley PJ (1995) J Protein Chem 14:359–372CrossRefGoogle Scholar
  57. 57.
    Zeng J, Dunlop RA, Rodgers KJ, Davies MJ (2006) Biochem J 398:197–206CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jadwiga Pietkiewicz
    • 1
  • Agnieszka Bronowicka-Szydełko
    • 1
  • Katarzyna Dzierzba
    • 1
  • Regina Danielewicz
    • 1
  • Andrzej Gamian
    • 1
    • 2
  1. 1.Department of Medical BiochemistryWroclaw Medical UniversityWroclawPoland
  2. 2.Institute of Immunology and Experimental TherapyPolish Academy of SciencesWroclawPoland

Personalised recommendations