The Protein Journal

, Volume 29, Issue 7, pp 516–523 | Cite as

Bio-inorganic Synthesis of ZnO Powders Using Recombinant His-tagged ZnO Binding Peptide as a Promoter

  • Lei Song
  • Yingying Liu
  • Zhifang Zhang
  • Xi Wang
  • Jinchun Chen


Inorganic-binding peptides termed as genetically engineered polypeptides for inorganics (GEPIs), are small peptide sequences selected via combinatorial biology-based protocols of phage or cell surface display technologies. Recent advances in nanotechnology and molecular biology allow the engineering of these peptides with specific affinity to inorganics, often used as molecular linkers or assemblers, to facilitate materials synthesis, which provides a new insight into the material science and engineering field. As a case study on this biomimetic application, here we report a novel biosynthetic ZnO binding protein and its application in promoting bio-inorganic materials synthesis. In brief, the gene encoding a ZnO binding peptide(ZBP) was genetically fused with His6-tag and GST-tag using E.coli expression vector pET-28a (+) and pGEX-4T-3. The recombinant protein GST-His-ZBP was expressed, purified with Ni–NTA system, identified by SDS–PAGE electrophoresis and Western blot analysis and confirmed by liquid chromatography-mass spectrometry/mass spectrometry (LC–MS/MS) analysis. Affinity adsorption test demonstrated that the fusion protein had a specific avidity for ZnO nanoparticles (NPs). Results from the bio-inorganic synthesis experiment indicated that the new protein played a promoting part in grain refinement and accelerated precipitation during the formation of the ultra-fine precursor powders in the Zn(OH)2 sol. X-ray diffraction (XRD) analysis on the final products after calcining the precursor powders showed that hexagonal wurtzite ZnO crystals were obtained. Our work suggested a novel approach to the application about the organic–inorganic interactions.


Recombinant technology Expression and purification Specific binding protein Biosorption Precursor precipitates Bio-inorganic synthesis 



Genetically engineered polypeptide for inorganics




Glutathione s-transferase


Transmission electron microscopy




X-ray diffraction


Ni2+-nitrilotriacetic acid


Liquid chromatography-mass spectrometry/mass spectrometry



The authors thank Dr. Naomi Furnish Yamada for careful review of this manuscript. We appreciate unselfish assistance of Researcher Qi Lian Qin, Dr. Huan Zhang, and Dr. Qing Yang from the Institute of Zoology, Chinese Academy of Sciences. We are truly grateful to Dr. Peng Hu from Institute of Process Engineering for the generous presents of nanomateirals. We thank Mr. Xiaoming Li from the Institute of Zoology, Chinese Academy of Sciences for analysis of mass spectrometry. We would like to express our most sincere gratitude to research team of Professor Jianguo Chen for enormous guidance and help.


  1. 1.
    Brown S (1997) Nat Biotechnol 15:269–272CrossRefGoogle Scholar
  2. 2.
    Brown S, Sarikaya M, Johnson E (2000) J Mol Biol 299:725–732CrossRefGoogle Scholar
  3. 3.
    Chu SY, Yan TM, Chen SL (2000) J Mater Sci Lett 19:349–352CrossRefGoogle Scholar
  4. 4.
    Dujardin E, Peet C, Stubbs G, Culver JN, Mann S (2003) Nano Lett 3:413–417CrossRefGoogle Scholar
  5. 5.
    Falini G, Albeck S, Weiner S, Addadi L (1996) Science 271:67–69CrossRefGoogle Scholar
  6. 6.
    Fangli Y, Peng H, Chunlei Y, Shulan H, Jinlin L (2003) J Mater Chem 13:634–637CrossRefGoogle Scholar
  7. 7.
    Hoess RH (2001) Chem Rev 101:3205–3218CrossRefGoogle Scholar
  8. 8.
    Huang Y, Chiang CY, Lee SK, Gao Y, Hu EL, Yoreo JD, Belcher AM (2005) Nano Lett 7:1429–1434CrossRefGoogle Scholar
  9. 9.
    Jacqueline MM, Fionna EL, Joel PM (2008) Curr Opin Struct Biol 18:484–490CrossRefGoogle Scholar
  10. 10.
    Kjærgaard K, Sørensen JK, Schembri MA, Klemm P (2000) Appl Environ Microbiol 66:10–14CrossRefGoogle Scholar
  11. 11.
    Lee SW, Mao C, Flynn CE, Belcher AM (2002) Science 296:892–895CrossRefGoogle Scholar
  12. 12.
    Li C, Kaplan DL (2003) Curr Opin Solid State Mater Sci 7:265–271CrossRefGoogle Scholar
  13. 13.
    Lin HM, Tzeng SJ, Hsiau PJ, Tsai WL (1998) Nanostruct Mater 10:465–477CrossRefGoogle Scholar
  14. 14.
    Mann S (1988) Nature 332:119–124CrossRefGoogle Scholar
  15. 15.
    Mao C, Flynn CE, Hayhurst A, Sweeney R, Qi J, Georgiou G, Iverson B, Belcher AM (2003) Proc Natl Acad Sci USA 100:6946–6951CrossRefGoogle Scholar
  16. 16.
    Naik RR, Brott LL, Clarson SJ, Stone MO (2002) J Nanosci Nanotechnol 2:95–100CrossRefGoogle Scholar
  17. 17.
    O’Regan B, Schwarthz DT, Zakeeruddin SM, Grätzel M (2000) Adv Mater 12:1263–1267CrossRefGoogle Scholar
  18. 18.
    Paine ML, Snead ML (1997) J Bone Mineraliz Res 12:221–227CrossRefGoogle Scholar
  19. 19.
    Ricky JT, Chunglin T, Liping M, Jianyong O, Cengiz SO, Yang Y (2006) Nat Nanotechnol 1:72–77CrossRefGoogle Scholar
  20. 20.
    Sarikaya M (1999) Proc Natl Acad Sci USA 96:14183–14185CrossRefGoogle Scholar
  21. 21.
    Sarikaya M, Tamerler C, Jen AK-Y, Schulten K, Baneyx F (2003) Nat Mater 2:577–585CrossRefGoogle Scholar
  22. 22.
    Sarikaya M, Tamerler C, Schwartz DT, Baneyx F (2004) Annu Rev Mater Res 34:373–408CrossRefGoogle Scholar
  23. 23.
    Tamerler C, Sarikaya M (2007) Acta Biomater 3:289–299CrossRefGoogle Scholar
  24. 24.
    Thai CK, Dai H, Sastry MS, Sarikaya M, Schwartz DT, Baneyx F (2004) Biotechnol Bioeng 87:129–137CrossRefGoogle Scholar
  25. 25.
    Umetsu M, Mizuta M, Tsumoto K, Ohara S, Takami S, Watanabe H, Kumagai I, Adschiri T (2005) Adv Mater 17:2571–2575CrossRefGoogle Scholar
  26. 26.
    Wang L, Muhammed M (1999) J Matar Chem 9:2871–2878CrossRefGoogle Scholar
  27. 27.
    Wittrup KD (2001) Curr Opin Biotechnol 12:395–399CrossRefGoogle Scholar
  28. 28.
    Xun W, Jing Z, Qing P, Yadong L (2005) Nature 437:121–124CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Lei Song
    • 1
  • Yingying Liu
    • 2
  • Zhifang Zhang
    • 3
  • Xi Wang
    • 4
  • Jinchun Chen
    • 1
  1. 1.College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
  2. 2.The Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, Department of Cell Biology and Genetics, College of Life SciencesPeking UniversityBeijingChina
  3. 3.Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
  4. 4.Institute of ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations