Skip to main content
Log in

Mechanism of Gemini Disulfide Detergent Mediated Oxidative Refolding of Lysozyme in a New Artificial Chaperone System

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Gemini surfactants are a new class of surfactants that consist of two hydrophilic head groups and two hydrophobic tails separated by a spacer group. As the properties of geminis are different to their monomeric counterparts, a large number of applications have been investigated. Here we report on the use of a new class of gemini detergents containing a disulfide bond in the spacer (Det-SS-Det) for protein refolding. Using lysozyme as a model protein we could demonstrate that the disulfide gemini detergents allow oxidative refolding of the protein in the absence of any external redox system in an “artificial chaperone system”. Refolding kinetics using gemini disulfide detergents differing in their hydrophobicity were analysed to determine the folding and aggregation rate constants. The results point to an important role of the transiently formed mixed disulfides between the protein and the detergent (Prot-SS-Det) in the oxidative refolding process of lysozyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

ALP:

Alkaline phosphatase

β-CD:

β-cyclodextrin

BSA:

Bovine serum albumin

CD:

Cyclodextrin

CMC:

Critical micelle concentration

CTAB:

Cetyltrimethylammonium bromide

C9SS:

Nonyl-dimethyl-(2-sulfanylethyl)azanium-disulfide

C10SS:

Decyl-dimethyl-(2-sulfanylethyl)azanium-disulfide

C11SS:

Undecyl-dimethyl-(2-sulfanylethyl)azanium-disulfide

C12SS:

Dodecyl-dimethyl-(2-sulfanylethyl)azanium-disulfide

C13SS:

Tridecyl-dimethyl-(2-sulfanylethyl)azanium-disulfide

C14SS:

Tetradecyl-dimethyl-(2-sulfanylethyl)azanium-disulfide

C15SS:

Pentadecyl-dimethyl-(2-sulfanylethyl)azanium-disulfide

C16SS:

Hexadecyl-dimethyl-(2-sulfanylethyl)azanium-disulfide

DTAB:

Dodecyltrimethylammonium bromide

DTTox:

Oxidized dithiothreitol

DTTred:

Reduced dithiothreitol

E. coli:

Escherichia coli

EDTA:

Ethylenediaminetetraacetic acid

GdmCl:

Guanidine hydrochloride

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

HPLC:

High pressure liquid chromatography

IB:

Inclusion body

m-β-CD:

Methyl-β-cyclodextrin

RNAse A:

Ribonuclease A

RP-HPLC:

Reversed phase high pressure liquid chromatography

RT:

Room temperature

TCEP:

Tris (2-carboxyethyl) phosphine hydrochloride

TFA:

Trifluoroacetic acid

Tris:

Tris (hydroxymethyl)-aminomethan

TTAB:

Tetradecyltrimethylammonium bromide

References

  1. Aachmann FL, Otzen DE, Larsen KL, Wimmer R (2003) Protein Eng 16:905–912

    Article  CAS  Google Scholar 

  2. Beld J, Woycechowsky KJ, Hilvert D (2008) Biochemistry 47:6985–6987

    Article  CAS  Google Scholar 

  3. Cleland JL, Randolph TW (1992) J Biol Chem 267:3147–3153

    CAS  Google Scholar 

  4. Couthon F, Clottes E, Vial C (1996) Biochem Biophys Res Commun 227:854–860

    Article  CAS  Google Scholar 

  5. De Bernardez Clark E, Hevehan D, Szela S, Maachupalli-Reddy J (1998) Biotechnol Prog 14:47–54

    Article  Google Scholar 

  6. Dong XY, Huang Y, Sun Y (2004) J Biotechnol 114:135–142

    Article  CAS  Google Scholar 

  7. Dong XY, Shi JH, Sun Y (2002) Biotechnol Prog 18:663–665

    Article  CAS  Google Scholar 

  8. Dong XY, Wang YB, Liu X, Sun Y (2001) Biotechnol Lett 23:1165–1169

    Article  CAS  Google Scholar 

  9. Gough JD, Williams RH, Donofrio AE, Lees WJ (2002) J Am Chem Soc 124:3885–3892

    Article  CAS  Google Scholar 

  10. Guerrero-Martinez A, Gonzalez-Gaitano G, Vinas MH, Tardajos G (2006) J Phys Chem 110:13819–13828

    CAS  Google Scholar 

  11. Gull N, Sen P, Khan RH, Kabir-ud-Din (2009) J Biochem 145:67–77

  12. Hagihara Y, Aimoto S, Fink AL, Goto Y (1993) J Mol Biol 231:180–184

    Article  CAS  Google Scholar 

  13. Heerklotz H, Epand RM (2001) Biophys J 80:271–279

    Article  CAS  Google Scholar 

  14. Hevehan DL, De Bernardez Clark E (1997) Biotechnol Bioeng 54:221–230

    Article  CAS  Google Scholar 

  15. Khodagholi F, Eftekharzadeh B, Yazdanparast R (2008) Protein J 27:123–129

    Article  CAS  Google Scholar 

  16. Khodagholi F, Yazdanparast R, Sadeghirizi A (2007) J Biomol Struct Dyn 25:189–194

    CAS  Google Scholar 

  17. Khodarahmi R, Yazdanparast R (2005) Int J Biol Macromol 36:191–197

    Article  CAS  Google Scholar 

  18. Loibner H, Pruckner A, Stütz A (1984) Tetrahedron Lett 25:2535–2536

    Article  CAS  Google Scholar 

  19. Maachupalli-Reddy J, Kelley BD, De Bernardez Clark E (1997) Biotechnol Prog 13:144–150

    Article  CAS  Google Scholar 

  20. Madar DJ, Patel AS, Lees WJ (2009) J Biotechnol 142:214–219

    Article  CAS  Google Scholar 

  21. Marston FAO (1986) Biochem J 240:1–12

    CAS  Google Scholar 

  22. Menger FM, Littau CA (1991) J Am Chem Soc 113:1451–1452

    Article  CAS  Google Scholar 

  23. Mwakibete H, Bloor DM, Wyn-Jones E (1994) Langmuir 10:3328–3331

    Article  CAS  Google Scholar 

  24. Ouyang M, Remy JS, Szoka FC (2000) Bioconjugate Chem 11:104–112

    Article  CAS  Google Scholar 

  25. Perraudin JP, Torchia TE, Wetlaufer DB (1983) J Biol Chem 258:11834–11839

    CAS  Google Scholar 

  26. Pi Y, Shang Y, Peng C, Liu H, Hu Y, Jiang J (2006) Biopolymers 83:243–249

    Article  CAS  Google Scholar 

  27. Prabha CR, Rao ChM (2004) Fed Europ Biochem Soc 557:69–72

    CAS  Google Scholar 

  28. Qoronfleh MW, Hesterberg LK, Seefeldt MB (2007) Protein Expression and Purif 55:209–224

    Article  CAS  Google Scholar 

  29. Raman B, Ramakrishna T, Rao CM (1996) J Biol Chem 271:17067–17072

    Article  CAS  Google Scholar 

  30. Roux P, Ruoppolo M, Chaffotte A, Goldberg ME (1999) Protein Sci 8:2751–2760

    Article  CAS  Google Scholar 

  31. Rozema D, Gellman SH (1996) Biochemistry 35:15760–15771

    Article  CAS  Google Scholar 

  32. Sharp TR, Rosenberry TL (1982) J Biochem Bioph Methods 6:159–172

    Article  CAS  Google Scholar 

  33. Wain R, Smith LJ, Dobson CM (2005) J Mol Biol 351:662–671

    Article  CAS  Google Scholar 

  34. Weissman JS, Hohl CM, Kovalenko O, Kashi Y, Chen S, Braig K, Saibil HR, Fenton WA, Horwich AL (1995) Cell 83:577–587

    Article  CAS  Google Scholar 

  35. Wetlaufer DB, Branca PA, Chen G (1987) Protein Eng 1:141–146

    Article  CAS  Google Scholar 

  36. Wetlaufer DB, Saxena VP (1970) Biochemistry 9:5015–5023

    Article  CAS  Google Scholar 

  37. Yamaguchi S, Yamamoto E, Tsukiji S, Nagamune T (2008) Biotechnol Prog 24:402–408

    Article  CAS  Google Scholar 

  38. Yazdanparast R, Esmaeili MA, Khodagholi F (2007) Int J Biol Macromol 40:126–133

    Article  CAS  Google Scholar 

  39. Yazdanparast R, Khodarahmi R, Soori E (2005) Arch Biochem Biophys 437:178–185

    Article  CAS  Google Scholar 

  40. Yazdanparast R, Khodagholi F (2006) Arch Biochem Biophys 446:11–19

    Article  CAS  Google Scholar 

  41. Zana R, Talmon Y (1993) Nature 362:228–230

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Landesstiftung Baden-Württemberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Frech.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potempa, M., Hafner, M. & Frech, C. Mechanism of Gemini Disulfide Detergent Mediated Oxidative Refolding of Lysozyme in a New Artificial Chaperone System. Protein J 29, 457–465 (2010). https://doi.org/10.1007/s10930-010-9279-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-010-9279-8

Keywords

Navigation