Advertisement

The Protein Journal

, Volume 29, Issue 6, pp 387–393 | Cite as

Towards the Development of Hemerythrin-Based Blood Substitutes

  • Augustin C. Mot
  • Alina Roman
  • Iulia Lupan
  • Donald M. KurtzJr
  • Radu Silaghi-Dumitrescu
Article

Abstract

Hemerythrin is proposed as an alternative to hemoglobin-based blood substitutes. In contrast to hemoglobin, hemerythrin exhibits negligible reactivity towards oxidative and nitrosative stress agents (peroxide, nitric oxide, nitrite). Protocols for attachment of polyethylene glycol and glutaraldehyde cross-linking of Hr are described. These derivatizations appear to have favorable effects on O2 affinity and autoxidation rates for use in blood substitutes. Based on lessons learned from hemoglobin-based blood substitutes, these derivatizations should also help limit extravasation and antigenicity of a hemerythrin-based blood substitute.

Keywords

Hemerythrin Blood substitute Oxygen carrier Hemoglobin 

Abbreviations

Hr

Hemerythrin

Hb

Hemoglobin

LB/amp

Luria–Bertani/ampicillin

OD600

Optical density at 600 nm

SDS–PAGE

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

PBS

Phosphate buffer saline

PEG

Polyethelene glycol

MS

Methyl-PEG4-N-hydroxysuccinimide ester

TMS

(Methyl-PEG12)3-PEG4-N-hydroxysuccinimide ester

DMSO

Dimethylsulfoxide

GL

Gluteraldehyde

Notes

Acknowledgments

We thank Prof. C.C. Cooper (University of Essex, UK) for helpful discussions. Funding from the Romanian government (project PNII 565/2007) and NIH grant GM040388 (D.M.K.) is gratefully acknowledged.

References

  1. 1.
    Alayash AI, Cashon RE (1994) Ann NY Acad Sci 738:378–381CrossRefGoogle Scholar
  2. 2.
    Alayash AI (2004) Nat Rev Drug Discov 3(2):152–159CrossRefGoogle Scholar
  3. 3.
    Blomberg LM, Blomberg MRA, Siegbahn PEM (2004) J Biol Inorg Chem 9:923–935CrossRefGoogle Scholar
  4. 4.
    Chang TM (2004) Artif Organs 28(9):789–794CrossRefGoogle Scholar
  5. 5.
    Chang TMS (2009) Crit Care Clinics 25:373–382CrossRefGoogle Scholar
  6. 6.
    Cooper CE, Silaghi-Dumitrescu R, Rukengwa M, Alayash AI, Buehler PW (2008) Biochim Biophys Acta 1784(10):1415–1420Google Scholar
  7. 7.
    Eike JH, Palmer AF (2004) Biotechnol Prog 20(5):1543–1549CrossRefGoogle Scholar
  8. 8.
    Farmer CS, Kurtz DM Jr, Phillips RS, Ai J, Sanders-Loehr J (2000) J Biol Chem 275(22):17043–17050CrossRefGoogle Scholar
  9. 9.
    Farmer CS, Kurtz DM Jr, Liu ZJ, Wang BC, Rose J, Ai J, Sanders-Loehr J (2001) J Biol Inorg Chem 6(4):418–429CrossRefGoogle Scholar
  10. 10.
    Giulivi C, Davies KJA (1990) J Biol Chem 265(32):19453–19460Google Scholar
  11. 11.
    Gladwin MT (2005) Am J Respir Cell Mol Biol 32(5):363–366CrossRefGoogle Scholar
  12. 12.
    Gu J, Chang TM (2009) Artif Cells Blood Substit Immobil Biotechnol 37(2):69–77CrossRefGoogle Scholar
  13. 13.
    Herold S (1998) FEBS Lett 439(1–2):85–88CrossRefGoogle Scholar
  14. 14.
    Herold S, Exner M, Nauser T (2001) Biochemistry 40(11):3385–3395CrossRefGoogle Scholar
  15. 15.
    Jin S, Kurtz DM Jr, Liu ZJ, Rose J, Wang BC (2002) J Am Chem Soc 124:9845–9855CrossRefGoogle Scholar
  16. 16.
    Kryatov SV, Rybak-Akimova EV, Schindler S (2005) Chem Rev 105:2175–2226CrossRefGoogle Scholar
  17. 17.
    Liu ZC, Chang TM (2008) Artif Cells Blood Substit Immobil Biotechnol 36(5):421–430CrossRefGoogle Scholar
  18. 18.
    Nocek JM, Kurtz DM Jr, Pickering RA, Doyle MP (1984) J Biol Chem 259(20):12334–12338Google Scholar
  19. 19.
    Olson JS, Foley EW, Rogge C, Tsai AL, Doyle MP, Lemon DD (2004) Free Radic Biol Med 36(6):685–697CrossRefGoogle Scholar
  20. 20.
    Reeder BJ, Sharpe MA, Kay AD, Kerr M, Moore K, Wilson MT (2002) Biochem Soc Trans 30(4):745–748CrossRefGoogle Scholar
  21. 21.
    Reeder BJ, Svistunenko DA, Sharpe MA, Wilson MT (2002) Biochemistry 41:367–375CrossRefGoogle Scholar
  22. 22.
    Reeder BJ, Svistunenko DA, Cooper CE, Wilson MT (2004) Antioxid Redox Signal 6(6):954–966Google Scholar
  23. 23.
    Reeder BJ, Grey M, Silaghi-Dumitrescu RL, Svistunenko DA, Bulow L, Cooper CE, Wilson MT (2008) J Biol Chem 283(45):30780–30787CrossRefGoogle Scholar
  24. 24.
    Silaghi-Dumitrescu R, Silaghi-Dumitrescu I (2006) J Inorg Biochem 100(1):161–166CrossRefGoogle Scholar
  25. 25.
    Tsuchida E, Sou K, Nakagawa A, Sakai H, Komatsu T, Kobayashi K (2009) Bioconjug Chem 20(8):1419–1440CrossRefGoogle Scholar
  26. 26.
    Vollaard NB, Reeder BJ, Shearman JP, Menu P, Wilson MT, Cooper CE (2005) Free Radic Biol Med 39(9):1216–1228CrossRefGoogle Scholar
  27. 27.
    Vollaard NB, Shearman JP, Cooper CE (2005) Sports Med 35(12):1045–1062CrossRefGoogle Scholar
  28. 28.
    Winslow RM (2004) Artif Organs 28(9):800–806CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Augustin C. Mot
    • 1
  • Alina Roman
    • 1
  • Iulia Lupan
    • 2
  • Donald M. KurtzJr
    • 3
  • Radu Silaghi-Dumitrescu
    • 1
  1. 1.Department of Chemistry and Chemical Engineering“Babes-Bolyai” UniversityCluj-NapocaRomania
  2. 2.Department of Biology“Babes-Bolyai” UniversityCluj-NapocaRomania
  3. 3.Department of ChemistryUniversity of Texas at San AntonioSan AntonioUSA

Personalised recommendations