The Protein Journal

, Volume 29, Issue 5, pp 380–385 | Cite as

A Comparative Study with Colchicine on Glutathione Reductase



Colchicine is a drug used for the treatment of FMF, primary biliary cirrhosis, psoriasis, Behçet’s disease, aphthous stomatitis. Glutathione reductase (GR; E.C is a crucial enzyme which reduces glutathione disulphide to the sulfhydryl form GSH by the NADPH-dependent reduction, which is an important cellular antioxidant system. The purpose of the present work is to evaluate the in vitro effects of colchicine on GR from various sources. The component of glutathione redox cycle, GR, plays important role in the protection of the cell from the toxic effects of reactive oxygen species. Due to its significance the enzyme has been purified from a number of animals, plants and microbial sources and studied the in vitro effects of many chemical compounds or drugs on enzyme activity. We have established that colchicine inhibits GR in a concentration dependent manner. We have investigated the kinetic characterization, inhibition types and constants (Ki).


Glutathione reductase Colchicine Inhibition Kinetic properties 



Nicotinamide adenine dinucleotide phosphate reduced form


Oxidized glutathione


Glutathione reductase


Inhibition constant


Reduced glutathione



This work is a part of a project and (0701101011) supported by Hacettepe University Scientific Research Unit.


  1. 1.
    Acan NL, Tezcan EF (1989) FEBS Lett 250:72–74CrossRefGoogle Scholar
  2. 2.
    Andrews P (1965) Biochem J 98:595Google Scholar
  3. 3.
    Arscott LD, Veine DM, Williams CH Jr (2000) Biochemistry 39(16):4711–4721CrossRefGoogle Scholar
  4. 4.
    Ben-Chetrit E, Levy M (1998) Semin Arthritis Rheum 28:48–59CrossRefGoogle Scholar
  5. 5.
    Bhat A, Naguwa SM, Cheema GS, Gershwin ME (2009) Ann N Y Acad Sci 1173:766–773CrossRefGoogle Scholar
  6. 6.
    Bradford MM (1976) Anal Biochem 72:248–254CrossRefGoogle Scholar
  7. 7.
    Cerquaglia C, Diaco M, Nucera G, La Regina M, Montalto M, Manna R (2005) Curr Drug Targets Inflamm Allergy 4:117–124CrossRefGoogle Scholar
  8. 8.
    Laemli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  9. 9.
    Molad Y (2002) Curr Rheumatol Rep 4:252–256CrossRefGoogle Scholar
  10. 10.
    Picaud T, Desbois A (2006) Biochemistry 45(51):15829–15837Google Scholar
  11. 11.
    Pope RM, Tschopp J (2007) Arthritis Rheum 56:3183–3188CrossRefGoogle Scholar
  12. 12.
    Rahman Q, Abidi P, Afaq F, Schiffmann D, Mossman BT, Kamp DW, Athar M (1999) Crit Rev Toxicol 29(6):543–568CrossRefGoogle Scholar
  13. 13.
    Rigante D, La Torraca I, Avallone L, Pugliese AL, Gaspari S, Stabile A (2006) Eur Rev Med Pharmacol Sci 10(4):173–178Google Scholar
  14. 14.
    Ruiz-Gómez MJ, Souviron A, Martínez-Morillo M, Gil L (2000) J Physiol Biochem 56(4):307–312CrossRefGoogle Scholar
  15. 15.
    Segel IH (1975) Enzyme kinetics, 3rd edn. Chapter 9 & 11, Wiley, Toronto, pp 273Google Scholar
  16. 16.
    Stapczynski S, Rothstein RJ, Gaye WA, Niemann JT (1981) Ann Emerg Med 10:364–369CrossRefGoogle Scholar
  17. 17.
    Tandogan B, Ulusu NN (2006) FABAD J Pharm Sci 31:230–237Google Scholar
  18. 18.
    Tandogan B, Ulusu NN (2010) Protein Pept Lett. Jan 10 (Epub ahead of print)Google Scholar
  19. 19.
    Ulusu NN, Tandoğan B (2007) Mol Cell Biochem 303(1–2):45–51CrossRefGoogle Scholar
  20. 20.
    Wiesenfeld PL, Garthoff LH, Sobotka TJ, Suagee JK, Barton CN (2007) J Appl Toxicol 27(5):421–433CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Faculty of Medicine, Department of BiochemistryHacettepe UniversityAnkaraTurkey

Personalised recommendations