Skip to main content
Log in

Cloning, Overexpression, Purification and Preliminary Characterization of Human Septin 8

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Mammalian septins comprise a family of 14 genes that encode GTP-binding proteins involved in important cellular processes such as cytokinesis and exocytosis. Expression of three different constructs encoding human septin 8 were analyzed and the results show that SEPT8GC, a clone expressing the conserved domain plus C-terminal domain of human septin 8 yields the highest amount of recombinant protein. This protein was purified by affinity chromatography followed by a gel filtration chromatography. CD spectrum of SEPT8GC is characteristic of folded proteins and it presents a transition profile with a T m of 54 °C. Fluorescence emission spectra, analytic gel filtration and DLS reflect the sample oligomeric heterogeneity with the predominance of dimers in solution. Homology models indicate clearly that the preferred dimer interface is the one comprising the GTP binding site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

GTP:

Guanosine triphosphate

GDP:

Guanosine diphosphate

CD:

Circular dichroism

T m :

Melting temperature

DLS:

Dynamic light scattering

TRAFAC:

Translation factor related class

kDa:

kilodalton

SEPT2:

Human Septin 2

SEPT6:

Human Septin 6

SEPT8:

Human Septin 8

SEPT10:

Human Septin 10

SEPT11:

Human Septin 11

SEPT14:

Human Septin 14

PCR:

Polymerase Chain Reaction

IPTG:

Isopropyl-β-d-thiogalactopyranoside

FPLC:

Fast performance liquid chromatography

SEPT8I:

Construct expressing human septin 8

SEPT8GC:

Construct expressing GTPase domain plus C-terminal of human septin 8

SEPT8G:

Construct expressing GTPase domain of human septin 8

References

  1. Adler AJ, Ross DG, Chen K, Stafford PA, Woisswillo MJ, Fasman GG (1974) Biochemistry 13:616–622

    Article  CAS  Google Scholar 

  2. Böhm G, Muhr R, Jaenicke R (1992) Protein Eng 5:191–195

    Article  Google Scholar 

  3. Burrows JF, Chanduloy S, McIlhatton MA, Nagar H, Yeates K, Donaghy P, Price J, Godwin AK, Johnston PG, Russell SE (2003) J Pathol 201(4):581–820

    Article  CAS  Google Scholar 

  4. Cao L, Yu W, Wu Y, Yu L (2009) Cell Mol Life Sci 66(20):3309–3323

    Article  CAS  Google Scholar 

  5. Cheon MS, Fountoulakis M, Dierssen M, Ferreres JC, Lubec G (2001) J Neural Transm Suppl 61:311–319

    Google Scholar 

  6. Edelhoch H (1967) Biochemistry 6:1948–1954

    Article  CAS  Google Scholar 

  7. Engidawork E, Gulesserian T, Fountoulakis M, Lubec G (2003) Neuroscience 122(1):145–154

    Article  CAS  Google Scholar 

  8. Field CM, Kellogg D (1999) Trends Cell Biol 9:387–394

    Article  CAS  Google Scholar 

  9. Finn RD, Tate J, Mistry J, Coggill PC, Sammut JS, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer EL, Bateman A (2008) Nucleic Acids Res Database Issue 36:D281–D288

    Article  CAS  Google Scholar 

  10. Garcia W, Araujo APU, Lara F, Foguel D, Tanaka M, Tanaka T, Garratt RC (2007) Biochemistry 46:11101–11109

    Article  CAS  Google Scholar 

  11. Hall P, Russell S (2004) J Pathol 204:489–505

    Article  CAS  Google Scholar 

  12. Hartwell LH (1971) Exp Cell Res 67:389–401

    Article  Google Scholar 

  13. Hsu SC, Hazuka CD, Roth R, Foletti DL, Heuser J, Scheller RH (1998) Neuron 20(6):1111–1122

    Article  CAS  Google Scholar 

  14. Huang Y, Surka MC, Reynaud D, Pace-Asciak C, Trimble WS (2006) FEBS J 273:3248–3260

    Article  CAS  Google Scholar 

  15. Ihara M, Tomimoto H, Kitayama H, Morioka Y, Akigunchi I, Shibasaki H, Noda M, Kinoshita M (2003) J Biol Chem 278:24012–24095

    Article  Google Scholar 

  16. Kalikin LM, Sims HL, Petty EM (2000) Genomics 63(2):165–172

    Article  CAS  Google Scholar 

  17. Kim DS, Hubbard SL, Peraud A, Salhia B, Sakai K, Rutka JT (2004) Neoplasia 6(2):168–178

    Article  CAS  Google Scholar 

  18. Kinoshita A, Kinoshita M, Akiyama H, Tomimoto H, Akiguchi I, Kumar S, Noda M, Kimura J (1998) Am J Pathol 153:1551–1560

    CAS  Google Scholar 

  19. Kinoshita M (2003) Genome Biol 4:236

    Article  Google Scholar 

  20. Kinoshita M, Field CM, Coughlin ML, Straight AF, Mitchison TJ (2002) Cell 3:791–802

    CAS  Google Scholar 

  21. Krissinel E, Henrick K (2007) Mol Biol 372:774–797

    Article  CAS  Google Scholar 

  22. Larisch S, Yi Y, Lotan R, Kerner H, Eimerl S, Tony Parks W, Gottfried Y, Birkey Reffey S, de Caestecker MP, Danielpour D, Book-Melamed N, Timberg R, Duckett CS, Lechleider RJ, Steller H, Orly J, Kim SJ, Roberts AB (2000) Nat Cell Biol 2(12):915–921

    Article  CAS  Google Scholar 

  23. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Bioinformatics 23(21):2947–2948

    Article  CAS  Google Scholar 

  24. Leipe DD, Wolf YI, Koonin EV, Aravind L (2002) J Mol Biol 317:41–72

    Article  CAS  Google Scholar 

  25. Low C, Macara IG (2006) J Biol Chem 281:30697–30706

    Article  CAS  Google Scholar 

  26. Macara IG, Baldarelli R, Field CM, Glotzer M, Hayashi Y, Hsu SC, Kennedy MB, Kinoshita M, Longtine M, Low C, Maltais LJ, McKenzie L, Mitchison TJ, Nishikawa T, Noda M, Petty EM, Peifer M, Pringle JR, Robinson PJ, Roth D, Russell SE, Stuhlmann H, Tanaka M, Tanaka T, Trimble WS, Ware J, Zeleznik-Le NJ, Zieger B (2002) Mol Biol Cell 13:4111–4113

    Article  CAS  Google Scholar 

  27. Martinez C, Ware J (2004) Exp Biol Med (Maywood) 229:1111–1119

    CAS  Google Scholar 

  28. Miroux B, Walker JE (1996) J Mol Biol 260(3):289–298

    Article  CAS  Google Scholar 

  29. Mitchison T, Field CM (2002) Curr Biol 12:R788–R790

    Article  CAS  Google Scholar 

  30. Montagna C, Lyu MS, Hunter K, Lukes L, Lowther W, Reppert T, Hissong B, Weaver Z, Ried T (2003) Cancer Res 63(9):2179–2187

    CAS  Google Scholar 

  31. Sakai K, Kurimoto M, Tsugu A, Hubbard SL, Trimble WS, Rutka JT (2002) J Neurooncol 57(3):169–177

    Article  Google Scholar 

  32. Scott M, McCluggage WG, Hillan KJ, Hall PA, Russell SE (2006) Int J Cancer 118(5):1325–1329

    Article  CAS  Google Scholar 

  33. Sheffield PJ, Oliver CJ, Kremer BE, Sheng S, Shao Z, Macara IG (2003) J Biol Chem 278:3483–3488

    Article  CAS  Google Scholar 

  34. Sirajuddin M, Farkasovsky M, Hauer F, Kühlmann D, Macara IG, Weyand M, Stark H, Wittinghofer A (2007) Nature 449(7160):311–315

    Article  CAS  Google Scholar 

  35. Versele M, Thorner J (2005) Trends Cell Biol 15:414–424

    Article  CAS  Google Scholar 

  36. Yan SZ, Beeler JÁ, Chen Y, Shelton RK, Tang WJ (2001) J Biol Chem 276(11):8500–8506

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP grants 2005/05149-6 and 1998/14138-2) and Associação Brasileira de Tecnologia de Luz Síncrotron (ABTLuS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. R. G. Barbosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souza, T.A.C.B., Barbosa, J.A.R.G. Cloning, Overexpression, Purification and Preliminary Characterization of Human Septin 8. Protein J 29, 328–335 (2010). https://doi.org/10.1007/s10930-010-9256-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-010-9256-2

Keywords

Navigation