Skip to main content
Log in

Improved A. faecalis Penicillin Amidase Mutant Retains the Thermodynamic and pH Stability of the Wild Type Enzyme

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Penicillin amidase from Alacaligenes faecalis is an attractive biocatalyst for hydrolysis of penicillin G for production of 6-aminopenicillanic acid, which is used in the synthesis of semi-synthetic β-lactam antibiotics. Recently a mutant of this enzyme with extended C-terminus of the A-chain comprising parts of the connecting linker peptide was constructed. Its turnover number for the hydrolysis of penicillin G was 140 s−1, about twice of the value for the wild-type enzyme (80 s−1). At the same time the specificity constant was improved about three-fold. The wild-type and the mutant enzymes showed similar pH stability suggesting that the linker peptide fragment covalently attached to the A-chain does not alter the electrostatic interactions in the protein core. Although the global stability of A. faecalis wild-type enzyme and the T206GS213G variant does not differ, the presence of the linker fragment stabilizes the domains interface, as evidenced by the monophasic transition of the mutant enzyme from folded to unfolded state during urea-induced denaturation. The high stability and activity of the mutant enzyme provides a rationale to use it as a biocatalyst in the industrial processes, where the enzyme must be more robust to fluctuations in the operational conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANS:

8-Anilino-1-naphtalenesulfonic acid

DTT:

Dithiotreitol

NIPAB:

6-Nitro-3-(phenylacetamido)benzoic acid

PA:

Penicillin amidase

References

  1. Arroyo M, de la Mata I, Acebal C, Pilar Castillon M (2003) Appl Microbiol Biotechnol 60:507–514

    CAS  Google Scholar 

  2. Brannigan JA, Dodson G, Duggleby HJ, Moody PC, Smith JL, Tomchik DR, Murzin AG (1995) Nature 378:416–419

    Article  CAS  Google Scholar 

  3. Bruggink A, Roos EC, de Vroom E (1998) Org Proc Res Dev 2:128–133

    Article  CAS  Google Scholar 

  4. Buchholz K, Kasche V, Bornscheuer UT (2005) Basics of enzymes as biocatalysts. In: Biocatalysts and enzyme technology. Wiley-VCH, Weinheim, pp 102, 359

  5. Chrunyk BA, Evans J, Lillquist J, Young P, Wetze R (1993) J Biol Chem 268:18053–18061

    CAS  Google Scholar 

  6. Clark PL, Weston BF, Gierasch LM (1998) Fold Des 3:401–412

    Article  CAS  Google Scholar 

  7. Duggleby HJ, Tolley SP, Hill CP, Dodson EJ, Dodson GG, Moody CE (1995) Nature 373:264–268

    Article  CAS  Google Scholar 

  8. Galunsky B, Lummer K, Kasche V (2000) Monatsh Chem 131:623–632

    CAS  Google Scholar 

  9. Galunsky B, Kasche V (2002) Adv Synth Catal 344:1115–1119

    Article  CAS  Google Scholar 

  10. Guranda DT, Volovik TS, Svedas VK (2004) Biochem Mosc 69:1386–1390

    Article  CAS  Google Scholar 

  11. Hewitt L, Kasche V, Lummer K, Lewis RJ, Murshudov GN, Verma CS, Dodson GG, Wilson KS (2000) J Mol Biol 302:887–898

    Article  CAS  Google Scholar 

  12. Ignatova Z, Stoeva S, Galunsky B, Hörnle C, Nurk A, Piotraschke E, Voelter W, Kasche V (1998) Biotechnol Lett 20:977–982

    Article  CAS  Google Scholar 

  13. Ignatova Z (2000) PhD thesis Technische Universität Hamburg-Harburg

  14. Ignatova Z, Enfors S, Hobbie M, Taruttis S, Vogd C, Kasche V (2000) Enzyme Microb Technol 26:165–170

    Article  CAS  Google Scholar 

  15. Ignatova Z, Hörnle C, Nurk A, Kasche V (2002) Biochem Biophys Res Commun 291:146–149

    Article  CAS  Google Scholar 

  16. Ignatova Z, Wischnewski F, Notbohm H, Kasche V (2005) J Mol Biol 348:999–1014

    Article  CAS  Google Scholar 

  17. Jaenicke R (1999) Prog Biophys Mol Biol 71:155–241

    Article  CAS  Google Scholar 

  18. Jiang X, Smith CS, Petrassi MH, Hammarström P, White JT, Sacchettini JC, Kelly JW (2001) Biochemistry 40:11442–11452

    Article  CAS  Google Scholar 

  19. Kasche V (1986) Enzyme Microb Technol 8:4–16

    Article  CAS  Google Scholar 

  20. Kasche V, Lummer K, Nurk A, Piotraschke E, Rieks A, Stoeva S, Voelter W (1999) Biochim Biophys Acta 1433:76–86

    CAS  Google Scholar 

  21. Kasche V, Galunsky B, Ignatova Z (2003) Eur J Biochem 270:4721–4728

    Article  CAS  Google Scholar 

  22. Kasche V, Ignatova Z, Märkl H, Plate W, Punckt N, Schmidt D, Wiegandt K, Ernst B (2005) Biotechnol Prog 21:432–438

    Article  CAS  Google Scholar 

  23. Khurana R, Gillespie JR, Talapatra A, Minert LJ, Ionescu-Zanetti C, Millett I, Fink AL (2001) Biochemistry 40:3525–3535

    Article  CAS  Google Scholar 

  24. Lummer K (2000) PhD thesis Technische Universität Hamburg-Harburg

  25. McVey CE, Walsh MA, Dodson GG, Wilson KS, Brannigan JA (2001) J Mol Biol 313:139–150

    Article  CAS  Google Scholar 

  26. Pace NC, Scholtz MJ (1997) Measuring the conformational stability of a protein. In: Creighton TE (ed) Protein structure: a practical approach. IRL Press, Oxford, pp 299–321

  27. Privalov PL (1996) J Mol Biol 258:707–725

    Article  CAS  Google Scholar 

  28. Quintas A, Saraiva MJM, Brito RMM (1999) J Biol Chem 274:32943–32949

    Article  CAS  Google Scholar 

  29. Svedas V, Guranda D, van Langen L, van Rantwijk F, Sheldon R (1997) FEBS Lett 417:414–418

    Article  CAS  Google Scholar 

  30. Svedas VK, Margolin AL, Sherestyuk CF, Klyosov AA, Berezin IV (1977) Biotechnol Lett 7:877–882

    Google Scholar 

  31. Verhaert RMD, Riemens AM, van der Laan JM, van Duin J, Quax WJ (1997) Appl Environ Microbiol 63:3412–3418

    CAS  Google Scholar 

  32. Vogl T, Brengelmann R, Hinz HJ, Scharf M, Lötzbeyer M, Engels JW (1995) J Mol Biol 254:481–496

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruslan Yuryev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuryev, R., Kasche, V., Ignatova, Z. et al. Improved A. faecalis Penicillin Amidase Mutant Retains the Thermodynamic and pH Stability of the Wild Type Enzyme. Protein J 29, 181–187 (2010). https://doi.org/10.1007/s10930-010-9238-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-010-9238-4

Keywords

Navigation