Skip to main content
Log in

The Role of Ile476 in the Structural Stability and Substrate Binding of Human Cytochrome P450 2C8

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The biological function and stability of a cytochrome P450 (CYP) mainly depend on the subtle properties of the residues in the active site cavity, which are generally more divergent among proteins than other parts of the protein. As the most unique member of human CYP2C family, CYP2C8 has an isoleucine (Ile) 476 instead of phenylalanine (Phe) in substrate recognizing site 6 (SRS6). However, the role of Ile476 of CYP2C8 is still unknown. Therefore, six site-directed mutants of CYP2C8 were constructed to better define this. By UV–visible and circular dichroism spectroscopy studies, we studied for the first time the structural stability and all-trans-retinoic acid binding capability of the CYP2C8 variants. We found that the ferric CYP2C8 went through three states during thermal unfolding. Combined with substrate binding studies, our data revealed that residue 476 was involved in contact with substrate and was important for maintaining the thermal stability of CYP2C8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

CYP:

Cytochrome P450

PCR:

Polymerase chain reaction

SRS:

Substrate recognizing site

CHAPS:

3-[(3-Cholamidopropyl)-dimethylammonio]-1-propanesulfonate

SDS–PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

CD:

Circular dichroism

K d :

The apparent substrate dissociation constant

ΔA max :

The extrapolated maximum spectral change

MALDI-TOF:

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

References

  1. Auclair K, Moenne-Loccoz P, Ortiz de Montellano PR (2001) J Am Chem Soc 123:4877–4885

    Article  CAS  Google Scholar 

  2. Berry EA, Trumpower BL (1987) Anal Biochem 161:1–15

    Article  CAS  Google Scholar 

  3. Cavaco I, Stromberg-Norklit J, Kaneko A, Msellem MI, Dahoma M, Ribeiro VL, Bjorkman A, Gil JP (2005) Eur J Clin Pharmacol 61:15–18

    Article  CAS  Google Scholar 

  4. Chen CD, Doray B, Kemper B (1997) J Biol Chem 272:22891–22897

    Article  CAS  Google Scholar 

  5. Dai D, Zeldin DC, Blaisdell JA, Chanas B, Coulter SJ, Ghanayem BI, Goldstein JA (2001) Pharmacogenetics 11:597–607

    Article  CAS  Google Scholar 

  6. De Groot MJ, Alex AA, Jones BC (2002) J Med Chem 45:1983–1993

    Article  Google Scholar 

  7. Denisov IG, Makris TM, Sligar SG, Schlichting I (2005) Chem Rev 105:2253–2277

    Article  CAS  Google Scholar 

  8. Dickmann LJ, Locuson CW, Jones JP, Rettie AE (2004) Mol Pharmacol 65:842–850

    Article  CAS  Google Scholar 

  9. Gotoh O (1992) J Biol Chem 267:83–90

    CAS  Google Scholar 

  10. Haugen DA, Coon MJ (1976) J Biol Chem 251:7929–7939

    CAS  Google Scholar 

  11. Hichiya H, Tanaka-Kagawa T, Soyama A, Jinno H, Koyano S, Katori N, Matsushima E, Uchiyama S, Tokunaga H, Kimura H, Minami N, Katoh M, Sugai K, Goto Y, Tamura T, Yamamoto N, Ohe Y, Kunitoh H, Nokihara H, Yoshida T, Minami H, Saijo N, Ando M, Ozawa S, Saito Y, Sawada J (2005) Drug Metab Dispos 33:630–636

    Article  CAS  Google Scholar 

  12. Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR (1989) Gene 77:51–59

    Article  CAS  Google Scholar 

  13. Jefcoate CR (1978) Methods Enzymol 52:258–279

    Article  CAS  Google Scholar 

  14. Johnson EF, Stout CD (2005) Biochem Biophys Res Commun 338:331–336

    Article  CAS  Google Scholar 

  15. Jung F, Griffin KJ, Song W, Richardson TH, Yang M, Johnson EF (1998) Biochemistry 37:16270–16279

    Article  CAS  Google Scholar 

  16. Kelly SM, Jess TJ, Price NC (2005) Biochim Biophys Acta 1751:119–139

    CAS  Google Scholar 

  17. Kerdpin O, Elliot DJ, Boye SL, Birkett DJ, Yoovathaworn K, Miners JO (2004) Biochemistry 43:7834–7842

    Article  CAS  Google Scholar 

  18. King LM, Gainer JV, David GL, Dai D, Goldstein JA, Brown NJ, Zeldin DC (2005) Pharmacogenet Genomics 15:7–13

    Article  CAS  Google Scholar 

  19. Klose TS, Blaisdell JA, Goldstein JA (1999) J Biochem Mol Toxicol 13:289–295

    Article  CAS  Google Scholar 

  20. Koo LS, Immoos CE, Cohen MS, Farmer PJ, Ortiz de Montellano PR (2002) J Am Chem Soc 124:5684–5691

    Article  CAS  Google Scholar 

  21. Koo LS, Tschirret-Guth RA, Straub WE, Moenne-Loccoz P, Loehr TM, Ortiz de Montellano PR (2000) J Biol Chem 275:14112–14123

    Article  CAS  Google Scholar 

  22. Kumar S, Sun L, Liu H, Muralidhara BK, Halpert JR (2006) Protein Eng Des Sel 19:547–554

    Article  CAS  Google Scholar 

  23. Kuwajima K (1989) Proteins 6:87–103

    Article  CAS  Google Scholar 

  24. Manna SK, Mazumdar S (2006) Biochemistry 45:12715–12722

    Article  CAS  Google Scholar 

  25. Martinis SA, Blanke SR, Hager LP, Sligar SG, Hoa GH, Rux JJ, Dawson JH (1996) Biochemistry 35:14530–14536

    Article  CAS  Google Scholar 

  26. McLean MA, Maves SA, Weiss KE, Krepich S, Sligar SG (1998) Biochem Biophys Res Commun 252:166–172

    Article  CAS  Google Scholar 

  27. Melet A, Assrir N, Jean P, Pilar Lopez-Garcia M, Marques-Soares C, Jaouen M, Dansette PM, Sari MA, Mansuy D (2003) Arch Biochem Biophys 409:80–91

    Article  CAS  Google Scholar 

  28. Melet A, Marques-Soares C, Schoch GA, Macherey AC, Jaouen M, Dansette PM, Sari MA, Johnson EF, Mansuy D (2004) Biochemistry 43:15379–15392

    Article  CAS  Google Scholar 

  29. Mouro C, Jung C, Bondon A, Simonneaux G (1997) Biochemistry 36:8125–8134

    Article  CAS  Google Scholar 

  30. Murray GI (2000) J Pathol 192:419–426

    Article  CAS  Google Scholar 

  31. Murugan R, Mazumdar S (2004) J Biol Inorg Chem 9:477–488

    Article  CAS  Google Scholar 

  32. Omura T, Sato R (1964) J Biol Chem 239:2370–2378

    CAS  Google Scholar 

  33. Omura T, Sato R (1964) J Biol Chem 239:2379–2385

    CAS  Google Scholar 

  34. Ortiz de Montellano PR (1995) Cytochrome P450: structure, mechanism and biochemistry. Plenum Press, New York, pp 473–535

    Google Scholar 

  35. Pace CN (1986) Methods Enzymol 131:266–280

    Article  CAS  Google Scholar 

  36. Pontius J, Richelle J, Wodak SJ (1996) J Mol Biol 264:121–136

    Article  CAS  Google Scholar 

  37. Poulos TL, Finzel BC, Howard AJ (1986) Biochemistry 25:5314–5322

    Article  CAS  Google Scholar 

  38. Qian W, Sun YL, Wang YH, Zhuang JH, Xie Y, Huang ZX (1998) Biochemistry 37:14137–14150

    Article  CAS  Google Scholar 

  39. Ridderström M, Zamora I, Fjellström O, Andersson TB (2001) J Med Chem 44:4072–4081

    Article  Google Scholar 

  40. Schoch GA, Yano JK, Sansen S, Dansette PM, Stout CD, Johnson EF (2008) J Biol Chem 283:17227–17237

    Article  CAS  Google Scholar 

  41. Schoch GA, Yano JK, Wester MR, Griffin KJ, Stout CD, Johnson EF (2004) J Biol Chem 279:9497–9503

    Article  CAS  Google Scholar 

  42. Snow CD, Nguyen H, Pande VS, Gruebele M (2002) Nature 420:102–106

    Article  CAS  Google Scholar 

  43. Totah RA, Rettie AE (2005) Clin Pharmacol Ther 77:341–352

    Article  CAS  Google Scholar 

  44. Wells AV, Li PS, Champion PM, Martinis SA, Sligar SG (1992) Biochemistry 31:4384–4393

    Article  CAS  Google Scholar 

  45. Wester MR, Stout CD, Johnson EF (2002) Methods Enzymol 357:73–79

    Article  CAS  Google Scholar 

  46. Wester MR, Yano JK, Schoch GA, Yang C, Griffin KJ, Stout CD, Johnson EF (2004) J Biol Chem 279:35630–35637

    Article  CAS  Google Scholar 

  47. Williams PA, Cosme J, Ward A, Angove HC, Matak Vinkovic D, Jhoti H (2003) Nature 424:464–468

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Eric F. Johnson (The Scripps Research Institute, California, USA) for the generous gift of the pCWOri+ plasmid, encoding cytochrome P450 2C8dH. This project was supported by the National Science Foundation of China [Approving No. 20571018].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang-Shi Tan or Zhong-Xian Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, L., Wang, ZH., Ni, FY. et al. The Role of Ile476 in the Structural Stability and Substrate Binding of Human Cytochrome P450 2C8. Protein J 29, 32–43 (2010). https://doi.org/10.1007/s10930-009-9218-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-009-9218-8

Keywords

Navigation