The Protein Journal

, 28:369 | Cite as

Using Support Vector Machine Combined with Post-processing Procedure to Improve Prediction of Interface Residues in Transient Complexes

  • Rong Liu
  • Yanhong Zhou


Reliable prediction of interface residues in transient complexes remains challenging, yet is highly desirable for the design of new drugs. The existing computational methods mainly rely on evolutionary information to identify these key residues, but evolutionary information may not be effective for the interface residues in all types of transient complexes, such as antigen–antibody complexes. Herein we combined B-factor with sequence profile and accessible surface area to predict these important residues using support vector machine (SVM). Furthermore, a post-processing method was developed to reduce the number of false positives recognized by SVM. The prediction results show that B-factor is an effective indicator for the interface residues in antigen–antibody complexes as well as those in other types of transient complexes. In addition, we found that the post-processing procedure made an important contribution to further improve the prediction performance. Consequently, the proposed approach could provide new insight into accurately predicting interface residues in different types of transient complexes.


Interface residues Antigen–antibody complexes B-factor Support vector machine Post-processing procedure 



Support vector machine


Accessible surface area


Matthew’s correlation coefficient


Receiver operating characteristic


Complementarity determining region



This work was supported by the National Natural Science Foundation of China (Grant No. 90608020) and NCET-060651.

Supplementary material

10930_2009_9203_MOESM1_ESM.doc (62 kb)
Supplementary material 1 (DOC 62 kb)


  1. 1.
    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Nucleic Acids Res 25:3389–3402CrossRefGoogle Scholar
  2. 2.
    Bradford JR, Westhead DR (2005) Bioinformatics 21:1487–1494CrossRefGoogle Scholar
  3. 3.
    Bradford JR, Needham CJ, Bulpitt AJ, Westhead DR (2006) J Mol Biol 362:365–386CrossRefGoogle Scholar
  4. 4.
    Chang CC, Lin CJ (2001) Software available at:
  5. 5.
    Chen H, Zhou HX (2005) Proteins 61:21–35CrossRefGoogle Scholar
  6. 6.
    Chung JL, Wang W, Bourne PE (2006) Proteins 62:630–640CrossRefGoogle Scholar
  7. 7.
    Dong Q, Wang X, Lin L, Guan Y (2007) BMC Bioinformatics 8:147CrossRefGoogle Scholar
  8. 8.
    Fariselli P, Pazos F, Valencia A, Casadio R (2002) Eur J Biochem 269:1356–1361CrossRefGoogle Scholar
  9. 9.
    Fariselli P, Zauli A, Rossi I, Finelli M, Martelli PL, Casadio R (2003) In: IEEE XIII workshop on neural networks for signal processing. pp 33–41Google Scholar
  10. 10.
    Friedrich T, Pils B, Dandekar T, Schultz J, Müller T (2006) Bioinformatics 22:2851–2857CrossRefGoogle Scholar
  11. 11.
    Hoskins J, Lovell S, Blundell TL (2006) Protein Sci 15:1017–1029CrossRefGoogle Scholar
  12. 12.
    Hwang H, Pierce B, Mintseris J, Janin J, Weng Z (2008) Proteins 73:705–709CrossRefGoogle Scholar
  13. 13.
    Jones S, Thornton JM (1996) Proc Natl Acad Sci USA 93:13–20CrossRefGoogle Scholar
  14. 14.
    Jones S, Thornton JM (1997) J Mol Biol 272:121–132CrossRefGoogle Scholar
  15. 15.
    Jones S, Thornton JM (1997) J Mol Biol 272:133–143CrossRefGoogle Scholar
  16. 16.
    Kabsch W, Sander C (1983) Biopolymers 22:2577–2637CrossRefGoogle Scholar
  17. 17.
    Keskin O, Gursoy A, Ma B, Nussinov R (2008) Chem Rev 108:1225–1244CrossRefGoogle Scholar
  18. 18.
    Koike A, Takagi T (2004) Protein Eng Des Sel 17:165–173CrossRefGoogle Scholar
  19. 19.
    Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T, Ben-Tal N (2005) Nucleic Acids Res 33:W299–W302CrossRefGoogle Scholar
  20. 20.
    Li JJ, Huang DS, Wang B, Chen P (2006) Int J Biol Macromol 38:241–247CrossRefGoogle Scholar
  21. 21.
    Li MH, Lin L, Wang XL, Liu T (2007) Bioinformatics 23:597–604CrossRefGoogle Scholar
  22. 22.
    Liang S, Zhang C, Liu S, Zhou Y (2006) Nucleic Acids Res 34:3698–3707CrossRefGoogle Scholar
  23. 23.
    Liu R, Jiang W, Zhou Y (2009) Amino Acids. doi: 10.1007/s00726–009–0245–8
  24. 24.
    Madabushi S, Yao H, Marsh M, Kristensen DM, Philippi A, Sowa ME, Lichtarge O (2002) J Mol Biol 316:139–154CrossRefGoogle Scholar
  25. 25.
    Mintseris J, Weng Z (2003) Proteins 53:629–639CrossRefGoogle Scholar
  26. 26.
    Mintseris J, Wiehe K, Pierce B, Anderson R, Chen R, Janin J, Weng Z (2005) Proteins 60:214–216CrossRefGoogle Scholar
  27. 27.
    Mirza O, Henriksen A, Ipsen H, Larsen JN, Wissenbach M, Spangfort MD, Gajhede M (2002) J Immunol 165:331–338Google Scholar
  28. 28.
    Neuvirth H, Raz R, Schreiber G (2004) J Mol Biol 338:181–199CrossRefGoogle Scholar
  29. 29.
    Ofran Y, Rost B (2003) FEBS Lett 544:236–239CrossRefGoogle Scholar
  30. 30.
    Ofran Y, Rost B (2007) Bioinformatics 23:e13–e16CrossRefGoogle Scholar
  31. 31.
    Ofran Y, Schlessinger A, Rost B (2008) J Immunol 181:6230–6235Google Scholar
  32. 32.
    Res I, Mihalek I, Lichtarge O (2005) Bioinformatics 21:2496–2501CrossRefGoogle Scholar
  33. 33.
    Rost B, Sander C (1994) Proteins 20:216–226CrossRefGoogle Scholar
  34. 34.
    Tseng YY, Liang J (2007) Ann Biomed Eng 35:1037–1042CrossRefGoogle Scholar
  35. 35.
    Vapnik VN (1995) The nature of statistical learning theory. Springer, New YorkGoogle Scholar
  36. 36.
    Wang B, Wong HS, Huang DS (2006) Protein Pept Lett 13:999–1005CrossRefGoogle Scholar
  37. 37.
    Wang Y, Xue Z, Shen G, Xu J (2008) Amino Acids 35:295–302CrossRefGoogle Scholar
  38. 38.
    Yan C, Dobbs D, Honavar V (2004) Bioinformatics 20:i371–i378CrossRefGoogle Scholar
  39. 39.
    Yuan Z, Zhao J, Wang ZX (2003) Protein Eng 16:109–114CrossRefGoogle Scholar
  40. 40.
    Zhou HX, Shan Y (2001) Proteins 44:336–343CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations