Skip to main content
Log in

Using Support Vector Machine Combined with Post-processing Procedure to Improve Prediction of Interface Residues in Transient Complexes

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Reliable prediction of interface residues in transient complexes remains challenging, yet is highly desirable for the design of new drugs. The existing computational methods mainly rely on evolutionary information to identify these key residues, but evolutionary information may not be effective for the interface residues in all types of transient complexes, such as antigen–antibody complexes. Herein we combined B-factor with sequence profile and accessible surface area to predict these important residues using support vector machine (SVM). Furthermore, a post-processing method was developed to reduce the number of false positives recognized by SVM. The prediction results show that B-factor is an effective indicator for the interface residues in antigen–antibody complexes as well as those in other types of transient complexes. In addition, we found that the post-processing procedure made an important contribution to further improve the prediction performance. Consequently, the proposed approach could provide new insight into accurately predicting interface residues in different types of transient complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SVM:

Support vector machine

ASA:

Accessible surface area

MCC:

Matthew’s correlation coefficient

ROC:

Receiver operating characteristic

CDR:

Complementarity determining region

References

  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  2. Bradford JR, Westhead DR (2005) Bioinformatics 21:1487–1494

    Article  CAS  Google Scholar 

  3. Bradford JR, Needham CJ, Bulpitt AJ, Westhead DR (2006) J Mol Biol 362:365–386

    Article  CAS  Google Scholar 

  4. Chang CC, Lin CJ (2001) Software available at: http://www.csie.ntu.edu.tw/~cjlin/libsvm

  5. Chen H, Zhou HX (2005) Proteins 61:21–35

    Article  CAS  Google Scholar 

  6. Chung JL, Wang W, Bourne PE (2006) Proteins 62:630–640

    Article  CAS  Google Scholar 

  7. Dong Q, Wang X, Lin L, Guan Y (2007) BMC Bioinformatics 8:147

    Article  Google Scholar 

  8. Fariselli P, Pazos F, Valencia A, Casadio R (2002) Eur J Biochem 269:1356–1361

    Article  CAS  Google Scholar 

  9. Fariselli P, Zauli A, Rossi I, Finelli M, Martelli PL, Casadio R (2003) In: IEEE XIII workshop on neural networks for signal processing. pp 33–41

  10. Friedrich T, Pils B, Dandekar T, Schultz J, Müller T (2006) Bioinformatics 22:2851–2857

    Article  CAS  Google Scholar 

  11. Hoskins J, Lovell S, Blundell TL (2006) Protein Sci 15:1017–1029

    Article  CAS  Google Scholar 

  12. Hwang H, Pierce B, Mintseris J, Janin J, Weng Z (2008) Proteins 73:705–709

    Article  CAS  Google Scholar 

  13. Jones S, Thornton JM (1996) Proc Natl Acad Sci USA 93:13–20

    Article  CAS  Google Scholar 

  14. Jones S, Thornton JM (1997) J Mol Biol 272:121–132

    Article  CAS  Google Scholar 

  15. Jones S, Thornton JM (1997) J Mol Biol 272:133–143

    Article  CAS  Google Scholar 

  16. Kabsch W, Sander C (1983) Biopolymers 22:2577–2637

    Article  CAS  Google Scholar 

  17. Keskin O, Gursoy A, Ma B, Nussinov R (2008) Chem Rev 108:1225–1244

    Article  CAS  Google Scholar 

  18. Koike A, Takagi T (2004) Protein Eng Des Sel 17:165–173

    Article  CAS  Google Scholar 

  19. Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T, Ben-Tal N (2005) Nucleic Acids Res 33:W299–W302

    Article  CAS  Google Scholar 

  20. Li JJ, Huang DS, Wang B, Chen P (2006) Int J Biol Macromol 38:241–247

    Article  CAS  Google Scholar 

  21. Li MH, Lin L, Wang XL, Liu T (2007) Bioinformatics 23:597–604

    Article  CAS  Google Scholar 

  22. Liang S, Zhang C, Liu S, Zhou Y (2006) Nucleic Acids Res 34:3698–3707

    Article  CAS  Google Scholar 

  23. Liu R, Jiang W, Zhou Y (2009) Amino Acids. doi:10.1007/s00726–009–0245–8

  24. Madabushi S, Yao H, Marsh M, Kristensen DM, Philippi A, Sowa ME, Lichtarge O (2002) J Mol Biol 316:139–154

    Article  CAS  Google Scholar 

  25. Mintseris J, Weng Z (2003) Proteins 53:629–639

    Article  CAS  Google Scholar 

  26. Mintseris J, Wiehe K, Pierce B, Anderson R, Chen R, Janin J, Weng Z (2005) Proteins 60:214–216

    Article  CAS  Google Scholar 

  27. Mirza O, Henriksen A, Ipsen H, Larsen JN, Wissenbach M, Spangfort MD, Gajhede M (2002) J Immunol 165:331–338

    Google Scholar 

  28. Neuvirth H, Raz R, Schreiber G (2004) J Mol Biol 338:181–199

    Article  CAS  Google Scholar 

  29. Ofran Y, Rost B (2003) FEBS Lett 544:236–239

    Article  CAS  Google Scholar 

  30. Ofran Y, Rost B (2007) Bioinformatics 23:e13–e16

    Article  CAS  Google Scholar 

  31. Ofran Y, Schlessinger A, Rost B (2008) J Immunol 181:6230–6235

    CAS  Google Scholar 

  32. Res I, Mihalek I, Lichtarge O (2005) Bioinformatics 21:2496–2501

    Article  CAS  Google Scholar 

  33. Rost B, Sander C (1994) Proteins 20:216–226

    Article  CAS  Google Scholar 

  34. Tseng YY, Liang J (2007) Ann Biomed Eng 35:1037–1042

    Article  Google Scholar 

  35. Vapnik VN (1995) The nature of statistical learning theory. Springer, New York

    Google Scholar 

  36. Wang B, Wong HS, Huang DS (2006) Protein Pept Lett 13:999–1005

    Article  CAS  Google Scholar 

  37. Wang Y, Xue Z, Shen G, Xu J (2008) Amino Acids 35:295–302

    Article  Google Scholar 

  38. Yan C, Dobbs D, Honavar V (2004) Bioinformatics 20:i371–i378

    Article  CAS  Google Scholar 

  39. Yuan Z, Zhao J, Wang ZX (2003) Protein Eng 16:109–114

    Article  CAS  Google Scholar 

  40. Zhou HX, Shan Y (2001) Proteins 44:336–343

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 90608020) and NCET-060651.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhong Zhou.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 62 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, R., Zhou, Y. Using Support Vector Machine Combined with Post-processing Procedure to Improve Prediction of Interface Residues in Transient Complexes. Protein J 28, 369–374 (2009). https://doi.org/10.1007/s10930-009-9203-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-009-9203-2

Keywords

Navigation