Skip to main content
Log in

Fast and Slow Tracks in Lysozyme Folding Elucidated by the Technique of Disulfide Scrambling

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

GdmCl (6 M) unfolded lysozyme was previously shown to refold via kinetically partitioned pathways (Kiefhaber in Proc Natl Acad Sci 92:9029–9033, 1995). About 80% of the unfolded lysozyme molecules refold on a slow pathway with well-populated intermediates. The remaining 20% of denatured lysozyme refold on a fast track without detectable intermediate. This kinetic heterogeneity has been proposed to originate from the collapsed state of lysozyme folding. Using the method of disulfide scrambling, we demonstrate in this report that these two populations of unfolded lysozyme can be isolated and analyzed separately. GdmCl (6 M) denatured lysozyme actually comprises two major populations of unfolded isomers, namely X-LYZ-a and X-LYZ-b with molar ratio of about 80:20. X-LYZ-a and X-LYZ-b exist in equilibrium in the unfolded state. Their disulfide structures and CD properties indicate that X-LYZ-a is more extensively unfolded than X-LYZ-b. Refolding experiments using the method of disulfide scrambling also show that folding kinetics of X-LYZ-a is about 8–10 times slower than that of X-LYZ-b and folding intermediates of X-LYZ-a is far more heterogeneous than that of X-LYZ-b. The results highlight the implication of the conformational heterogeneity of 6 M GdmCl denatured proteins for the interpretation of the initial stage of protein folding mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

LYZ:

Lysozyme

X-LYZ:

Scrambled lysozyme

α-LA:

α-Lactalbumin

HPLC:

High pressure liquid chromatography

References

  1. Bachmann A, Segel D, Kiefhaber T (2002) Biophys Chem 96:141–151

    Article  CAS  Google Scholar 

  2. Bai P, Peng Z (2001) J Mol Biol 314:321–329

    Article  CAS  Google Scholar 

  3. Baldwin RL (1989) Trends Biochem Sci 14:291–294

    Article  CAS  Google Scholar 

  4. Bieri O, Kiefhaber T (2001) J Mol Biol 310:919–935

    Article  CAS  Google Scholar 

  5. Chang J-Y (1994) Biochem J 300:643–650

    CAS  Google Scholar 

  6. Chang J-Y (1999) J Biol Chem 274:123–128

    Article  CAS  Google Scholar 

  7. Chang J-Y (2002) J Biol Chem 277:120–126

    Article  CAS  Google Scholar 

  8. Chang J-Y, Ballatore A (2000) FEBS Lett 473:183–187

    Article  CAS  Google Scholar 

  9. Chang J-Y, Li L (2001) J Biol Chem 276:9705–9712

    Article  CAS  Google Scholar 

  10. Chang J-Y, Li L (2002) FEBS Lett 511:73–78

    Article  CAS  Google Scholar 

  11. Chang J-Y, Bulychev A, Li L (2001) FEBS Lett 487:298–300

    Article  Google Scholar 

  12. Daggett V, Fersht AR (2003) Trends Biochem Sci 28:18–25

    Article  CAS  Google Scholar 

  13. Gorovits BM, Seale JW, Horowitz PM (1995) Biochemistry 34:13928–13933

    Article  CAS  Google Scholar 

  14. Hammack BN, Smith CR, Bowler BE (2001) J Mol Biol 311:1091–1104

    Article  CAS  Google Scholar 

  15. Ikeguchi M, Kuwajima K, Mitani M, Sugai S (1986) Biochemistry 25:6965–6972

    Article  CAS  Google Scholar 

  16. Kato H, Feng H, Bai Y (2007) J Mol Biol 365:870–880

    Article  CAS  Google Scholar 

  17. Kiefhaber T (1995) Proc Natl Acad Sci USA 92:9029–9033

    Article  CAS  Google Scholar 

  18. Kuwajima K, Hiraoka Y, Ikeguchi M, Sugai S (1985) Biochemistry 24:874–881

    Article  CAS  Google Scholar 

  19. Matagne A, Dobson CM (1998) Cell Mol Life Sci 54:363–371

    Article  CAS  Google Scholar 

  20. Matagne A, Radford SE, Dobson CM (1997) J Mol Biol 267:1068–1074

    Article  CAS  Google Scholar 

  21. McCarney ER, Kohn JE, Plaxco KW (2005) Crit Rev Biochem Mol Biol 40:181–189

    Article  CAS  Google Scholar 

  22. Nakao M, Maki K, Arai M, Koshiba T, Nitta K, Kuwajima K (2005) Biochemistry 44:6685–6692

    Article  CAS  Google Scholar 

  23. Nakatani H, Maki K, Saeki K, Aizawa T, Demura M, Kawano K, Tomoda S, Kuwajima K (2007) Biochemistry 46:5238–5251

    Article  CAS  Google Scholar 

  24. Neri D, Billeter M, Wider G, Wuthrich K (1992) Science 257:1559–1563

    Article  CAS  Google Scholar 

  25. Noyelle K, Joniau M, Van Dael H (2001) J Mol Biol 308:807–819

    Article  CAS  Google Scholar 

  26. Parker MJ, Marqusee S (2000) J Mol Biol 300:1361–1375

    Article  CAS  Google Scholar 

  27. Radford SE, Dobson CM, Evans PA (1992) Nature 358:302–307

    Article  CAS  Google Scholar 

  28. Sasahara K, Nitta K (2006) Proteins 63:127–135

    Article  CAS  Google Scholar 

  29. Schlepckow K, Wirmer J, Bachmann A, Kiefhaber T, Schwalbe H (2008) J Mol Biol 378:686–698

    Article  CAS  Google Scholar 

  30. Shortle D, Ackerman MS (2001) Science 293:487–489

    Article  CAS  Google Scholar 

  31. Shortle D, Abeygunawardana C (1993) Structure 1:121–134

    Article  CAS  Google Scholar 

  32. Smith LJ, Fiebig KM, Schwalbe H, Dobson CM (1996) Fold Des 1:R95–R106

    Article  CAS  Google Scholar 

  33. Tanford C (1968) Adv Protein Chem 23:121–282

    Article  CAS  Google Scholar 

  34. Tanford C (1970) Adv Protein Chem 24:1–95

    Article  CAS  Google Scholar 

  35. Wildegger G, Kiefhaber T (1997) J Mol Biol 270:294–304

    Article  CAS  Google Scholar 

  36. Yi Q, Scalley-Kim ML, Alm EJ, Baker D (2000) J Mol Biol 299:1341–1351

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges the support of IsoVax Therapeutic Inc. and the endowment from the Robert Welch foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jui-Yoa Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, JY., Lu, BY. & Li, L. Fast and Slow Tracks in Lysozyme Folding Elucidated by the Technique of Disulfide Scrambling. Protein J 28, 300–304 (2009). https://doi.org/10.1007/s10930-009-9195-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-009-9195-y

Keywords

Navigation