The Protein Journal

, Volume 28, Issue 6, pp 300–304 | Cite as

Fast and Slow Tracks in Lysozyme Folding Elucidated by the Technique of Disulfide Scrambling

  • Jui-Yoa Chang
  • Bao-Yuan Lu
  • Li Li


GdmCl (6 M) unfolded lysozyme was previously shown to refold via kinetically partitioned pathways (Kiefhaber in Proc Natl Acad Sci 92:9029–9033, 1995). About 80% of the unfolded lysozyme molecules refold on a slow pathway with well-populated intermediates. The remaining 20% of denatured lysozyme refold on a fast track without detectable intermediate. This kinetic heterogeneity has been proposed to originate from the collapsed state of lysozyme folding. Using the method of disulfide scrambling, we demonstrate in this report that these two populations of unfolded lysozyme can be isolated and analyzed separately. GdmCl (6 M) denatured lysozyme actually comprises two major populations of unfolded isomers, namely X-LYZ-a and X-LYZ-b with molar ratio of about 80:20. X-LYZ-a and X-LYZ-b exist in equilibrium in the unfolded state. Their disulfide structures and CD properties indicate that X-LYZ-a is more extensively unfolded than X-LYZ-b. Refolding experiments using the method of disulfide scrambling also show that folding kinetics of X-LYZ-a is about 8–10 times slower than that of X-LYZ-b and folding intermediates of X-LYZ-a is far more heterogeneous than that of X-LYZ-b. The results highlight the implication of the conformational heterogeneity of 6 M GdmCl denatured proteins for the interpretation of the initial stage of protein folding mechanism.


Method of disulfide scrambling Isomers of unfolded protein Denaturation and unfolding Scrambled lysozyme Conformational isomers Lysozyme 





Scrambled lysozyme




High pressure liquid chromatography



The author acknowledges the support of IsoVax Therapeutic Inc. and the endowment from the Robert Welch foundation.


  1. 1.
    Bachmann A, Segel D, Kiefhaber T (2002) Biophys Chem 96:141–151CrossRefGoogle Scholar
  2. 2.
    Bai P, Peng Z (2001) J Mol Biol 314:321–329CrossRefGoogle Scholar
  3. 3.
    Baldwin RL (1989) Trends Biochem Sci 14:291–294CrossRefGoogle Scholar
  4. 4.
    Bieri O, Kiefhaber T (2001) J Mol Biol 310:919–935CrossRefGoogle Scholar
  5. 5.
    Chang J-Y (1994) Biochem J 300:643–650Google Scholar
  6. 6.
    Chang J-Y (1999) J Biol Chem 274:123–128CrossRefGoogle Scholar
  7. 7.
    Chang J-Y (2002) J Biol Chem 277:120–126CrossRefGoogle Scholar
  8. 8.
    Chang J-Y, Ballatore A (2000) FEBS Lett 473:183–187CrossRefGoogle Scholar
  9. 9.
    Chang J-Y, Li L (2001) J Biol Chem 276:9705–9712CrossRefGoogle Scholar
  10. 10.
    Chang J-Y, Li L (2002) FEBS Lett 511:73–78CrossRefGoogle Scholar
  11. 11.
    Chang J-Y, Bulychev A, Li L (2001) FEBS Lett 487:298–300CrossRefGoogle Scholar
  12. 12.
    Daggett V, Fersht AR (2003) Trends Biochem Sci 28:18–25CrossRefGoogle Scholar
  13. 13.
    Gorovits BM, Seale JW, Horowitz PM (1995) Biochemistry 34:13928–13933CrossRefGoogle Scholar
  14. 14.
    Hammack BN, Smith CR, Bowler BE (2001) J Mol Biol 311:1091–1104CrossRefGoogle Scholar
  15. 15.
    Ikeguchi M, Kuwajima K, Mitani M, Sugai S (1986) Biochemistry 25:6965–6972CrossRefGoogle Scholar
  16. 16.
    Kato H, Feng H, Bai Y (2007) J Mol Biol 365:870–880CrossRefGoogle Scholar
  17. 17.
    Kiefhaber T (1995) Proc Natl Acad Sci USA 92:9029–9033CrossRefGoogle Scholar
  18. 18.
    Kuwajima K, Hiraoka Y, Ikeguchi M, Sugai S (1985) Biochemistry 24:874–881CrossRefGoogle Scholar
  19. 19.
    Matagne A, Dobson CM (1998) Cell Mol Life Sci 54:363–371CrossRefGoogle Scholar
  20. 20.
    Matagne A, Radford SE, Dobson CM (1997) J Mol Biol 267:1068–1074CrossRefGoogle Scholar
  21. 21.
    McCarney ER, Kohn JE, Plaxco KW (2005) Crit Rev Biochem Mol Biol 40:181–189CrossRefGoogle Scholar
  22. 22.
    Nakao M, Maki K, Arai M, Koshiba T, Nitta K, Kuwajima K (2005) Biochemistry 44:6685–6692CrossRefGoogle Scholar
  23. 23.
    Nakatani H, Maki K, Saeki K, Aizawa T, Demura M, Kawano K, Tomoda S, Kuwajima K (2007) Biochemistry 46:5238–5251CrossRefGoogle Scholar
  24. 24.
    Neri D, Billeter M, Wider G, Wuthrich K (1992) Science 257:1559–1563CrossRefGoogle Scholar
  25. 25.
    Noyelle K, Joniau M, Van Dael H (2001) J Mol Biol 308:807–819CrossRefGoogle Scholar
  26. 26.
    Parker MJ, Marqusee S (2000) J Mol Biol 300:1361–1375CrossRefGoogle Scholar
  27. 27.
    Radford SE, Dobson CM, Evans PA (1992) Nature 358:302–307CrossRefGoogle Scholar
  28. 28.
    Sasahara K, Nitta K (2006) Proteins 63:127–135CrossRefGoogle Scholar
  29. 29.
    Schlepckow K, Wirmer J, Bachmann A, Kiefhaber T, Schwalbe H (2008) J Mol Biol 378:686–698CrossRefGoogle Scholar
  30. 30.
    Shortle D, Ackerman MS (2001) Science 293:487–489CrossRefGoogle Scholar
  31. 31.
    Shortle D, Abeygunawardana C (1993) Structure 1:121–134CrossRefGoogle Scholar
  32. 32.
    Smith LJ, Fiebig KM, Schwalbe H, Dobson CM (1996) Fold Des 1:R95–R106CrossRefGoogle Scholar
  33. 33.
    Tanford C (1968) Adv Protein Chem 23:121–282CrossRefGoogle Scholar
  34. 34.
    Tanford C (1970) Adv Protein Chem 24:1–95CrossRefGoogle Scholar
  35. 35.
    Wildegger G, Kiefhaber T (1997) J Mol Biol 270:294–304CrossRefGoogle Scholar
  36. 36.
    Yi Q, Scalley-Kim ML, Alm EJ, Baker D (2000) J Mol Biol 299:1341–1351CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Research Center for Protein ChemistryBrown Foundation Institute of Molecular MedicineHoustonUSA
  2. 2.Department of Biochemistry and Molecular BiologyThe University of TexasHoustonUSA

Personalised recommendations