Skip to main content
Log in

In Vitro Effect of Ozagrel on Mushroom Tyrosinase

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

This investigation, in vitro, shows that ozagrel, an antithrombotic drug, inhibited both monophenolase and diphenolase activities of mushroom tyrosinase when l-tyrosine and l-DOPA were assayed spectrophotometrically, respectively. The IC50 values, for monophenolase and diphenolase activities, were 1.35 and 3.45 mM, respectively. Ozagrel was estimated to be a reversible mixed-type inhibitor of diphenolase activity with the constants (K S1, K S2, K i1, and K i2) determined to be 2.21, 3.89, 0.454, and 0.799 mM, repectively. Increasing ozagrel concentrations provoked longer lag periods as well as a concomitant decrease in the monophenolase activity. Inhibition experiment demonstrated that ozagrel bound the enzyme at a site distincted from the substrate active site, but it bound to either E (Enzyme) or ES (Enzyme-Substrate) complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

TXAS:

Thromboxane synthase

l-DOPA:

l-3,4-Dihydroxyphenylalanine

DMSO:

Dimethylsulfoxide

Na2HPO4–NaH2PO4 :

Disodium hydrogenphosphate–sodium dihydrogen phosphate

IC50 :

The inhibition concentration leading to 50% of enzyme activity lost

References

  1. Ando H, Kondoh H, Ichihashi M, Hearing VJ (2007) J Invest Dermatol 127:751–761

    Article  CAS  Google Scholar 

  2. Bradford MM (1976) Anal Biochem 72:248–256

    Article  CAS  Google Scholar 

  3. Chen QX, Kubo I (2002) J Agric Food Chem 50:4108–4112

    Article  CAS  Google Scholar 

  4. Claus H, Decker H (2006) Syst Appl Microbiol 29:3–14

    Article  CAS  Google Scholar 

  5. Espín JC, Morales M, Varón R, Tudela J, García-Cánovas F (1997) Phytochemistry 44:17–22

    Article  Google Scholar 

  6. Espín JC, Wichers HJ (2001) Biochim Biophys Acta 1544:289–300

    Google Scholar 

  7. Gowda LR, Paul B (2002) J Agric Food Chem 50:1608–1614

    Article  CAS  Google Scholar 

  8. Huang XH, Chen QX, Wang Q, Song KK, Wang J, Sha L, Guan X (2006) Food Chem 94:1–6

    Article  CAS  Google Scholar 

  9. Jiménez M, Chazarra S, Escribano J, Cabanes J, García-Carmona F (2001) J Agric Food Chem 49:4060–4063

    Article  Google Scholar 

  10. Kawakatsu K, Kino T, Yasuba H, Kawaquchi H, Tsubata R, Satake N, Oshima S (1990) Int J Clin Pharmacol Ther Toxicol 28:158–163

    CAS  Google Scholar 

  11. Kahn MT, Choudhary MI, Khan KM, Rani M, Rahman A (2005) Bioorg Med Chem 13:3385–3395

    Article  Google Scholar 

  12. Kim JM, Chang SM, Kim IH, Kim YE, Hwang JH, Kim KS, Kim WS (2007) J Biochem Eng 37:271–278

    Article  CAS  Google Scholar 

  13. Kim YJ, Chung JE, Kurisawa M, Uyama H, Kobayashi S (2004) Biomacromolecules 5:474–479

    Article  CAS  Google Scholar 

  14. Kong KH, Hong MP, Choi SS, Kim YT, Cho SH (2003) Biotechnol Appl Biochem 31:113–118

    Article  Google Scholar 

  15. McMahon AM, Doyle EM, Brooks S, O’Connor KE (2007) Enzyme Microb Technol 40:1435–1441

    Article  CAS  Google Scholar 

  16. Molina FG, Muňoz JL, Varón R, Rodríguez López JN, Cánovas FG, Tudela J (2007) Int J Biochem Cell Biol 39:238–252

    Article  CAS  Google Scholar 

  17. Molina FG, Peňalver MJ, Fenoll LG, Rodríguez-López JN, Varón R, García-Cánovas F, Tudela J (2005) J Mol Catal B-Enzym 32:185–192

    Article  Google Scholar 

  18. Rodríguez-López JN, Tudela J, Varón R, García-Cánovas F (1992) J Biol Chem 267:3801–3810

    Google Scholar 

  19. Seo SY, Sharma VK, Sharma N (2003) J Agric Food Chem 51:2837–2853

    Article  CAS  Google Scholar 

  20. Shi Y, Chen QX, Wang Q, Song KK, Qiu L (2005) Food Chem 92:707–712

    Article  CAS  Google Scholar 

  21. Sugumaran M, Nellaiapp K, Amaratunga C (2000) Arch Biochem Biophys 378:393–403

    Article  CAS  Google Scholar 

  22. Wang SD, Luo WC, Xu SJ, Ding Q (2005) Pestic Biochem Physiol 82:52–58

    Article  CAS  Google Scholar 

  23. Wu H, Yu W, Huang L, Wang J, Tang X, Yang W, Liu Y, Yu H, Zhu D (2007) Eur J Pharmacol 573:55–59

    Article  CAS  Google Scholar 

  24. Yu L (2003) J Agric Food Chem 51:2344–2347

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present investigation was supported by Esquel Group, Grant 50773009 of Natural Science Foundation of China, Grant IRT0526 of program for Changjiang Scholars and Innovative Research Team in university, UK-CHINA Joint Laboratory for Therapeutic Textiles, and Grant of B07024 of Biomedical Textile Materials ‘111 Project’ from Ministry of Education of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua-Li Nie or Li-Min Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, SB., Xue, Y., Lv, XY. et al. In Vitro Effect of Ozagrel on Mushroom Tyrosinase. Protein J 28, 182–188 (2009). https://doi.org/10.1007/s10930-009-9182-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-009-9182-3

Keywords

Navigation