The Protein Journal

, 27:343 | Cite as

Structural Organization of Precursors of Thermolysin-like Proteinases

  • Ilya V. Demidyuk
  • Eugene V. Gasanov
  • Dina R. Safina
  • Sergey V. Kostrov


The primary structures of the full-length precursors of thermolysin-like proteinases (TLPs) were systemically analyzed. Structural comparison of the precursor amino-terminal regions (ATRs) removed during maturation allowed us to divide the family into two groups: peptidases with short (about 50 amino acids) and long (about 200 amino acids) ATRs. The accumulation of mutations in the ATRs of both types proved to correlate with that in the catalytic domains. No classical signal peptides were identified in the short ATRs, but they contained a conserved PPL-motif near the initiation methionine. The functional role of the short ATRs and PPL-motif is currently unclear. The C-terminal regions (CTRs) of TLP precursors, which are often removed during maturation, too, are found in about a half of precursors with long ATRs, but occur more rarely in precursors with short ATRs. CTRs in TLP precursors contain previously identified conserved domains typical for many other proteins and likely underlie the interaction with high molecular weight substrates.


Classification Propeptide Protein motif Protein precursor Thermolysin-like proteinase 



Thermolysin-like proteinase


Amino-terminal region


Carboxy-terminal region



This work was supported by the Russian Foundation for Basic Research (project nos. 06-04-48678, 06-04-48690, and 06-04-08123).


  1. 1.
    Rawlings ND, Barrett AJ (1995) Methods Enzymol 248:183–228CrossRefGoogle Scholar
  2. 2.
    Rawlings ND, Morton FR, Barrett AJ (2006) Nucleic Acids Res 34:D270–272CrossRefGoogle Scholar
  3. 3.
    Matthews BW (1988) Acc Chem Res 21:333–340CrossRefGoogle Scholar
  4. 4.
    de Kreij A, Venema G, van den Burg B (2000) J Biol Chem 275:31115–31120CrossRefGoogle Scholar
  5. 5.
    Feder J (1967) Biochemistry 6:2088–2093CrossRefGoogle Scholar
  6. 6.
    Feder J, Schuck JM (1970) Biochemistry 9:2784–2791CrossRefGoogle Scholar
  7. 7.
    Schechter I, Berger A (1967) Biochem Biophys Res Commun 27:157–162CrossRefGoogle Scholar
  8. 8.
    Shinde U, Inouye M (2000) Semin Cell Dev Biol 11:35–44CrossRefGoogle Scholar
  9. 9.
    Braun P, Tommassen J, Filloux A (1996) Mol Microbiol 19:297–306CrossRefGoogle Scholar
  10. 10.
    Marie-Claire C, Ruffet E, Beaumont A, Roques BP (1999) J Mol Biol 285:1911–1915CrossRefGoogle Scholar
  11. 11.
    McIver KS, Kessler E, Olson JC, Ohman DE (1995) Mol Microbiol 18:877–889CrossRefGoogle Scholar
  12. 12.
    Tang B, Nirasawa S, Kitaoka M, Marie-Claire C, Hayashi K (2003) Biochem Biophys Res Commun 301:1093–1098CrossRefGoogle Scholar
  13. 13.
    Kessler E, Safrin M (1994) J Biol Chem 269:22726–22731Google Scholar
  14. 14.
    O’Donohue MJ, Roques BP, Beaumont A (1994) Biochem J 300(Pt 2):599–603Google Scholar
  15. 15.
    Serkina AV, Gorozhankina TF, Shevelev AB, Chestukhina GG (1999) FEBS Lett 456:215–219CrossRefGoogle Scholar
  16. 16.
    Wetmore DR, Wong SL, Roche RS (1992) Mol Microbiol 6:1593–1604CrossRefGoogle Scholar
  17. 17.
    Kearns DB, Bonner PJ, Smith DR, Shimkets LJ (2002) J Bacteriol 184:1678–1684CrossRefGoogle Scholar
  18. 18.
    Miyamoto K, Nukui E, Hirose M, Nagai F, Sato T, Inamori Y, Tsujibo H (2002) Appl Environ Microbiol 68:5563–5570Google Scholar
  19. 19.
    Miyamoto K, Tsujibo H, Nukui E, Itoh H, Kaidzu Y, Inamori Y (2002) Biosci Biotechnol Biochem 66:416–421CrossRefGoogle Scholar
  20. 20.
    Miyoshi S, Kawata K, Tomochika K, Shinoda S, Yamamoto S (2001) Toxicon 39:1883–1886CrossRefGoogle Scholar
  21. 21.
    Miyoshi S, Wakae H, Tomochika K, Shinoda S (1997) J Bacteriol 179:7606–7609Google Scholar
  22. 22.
    Demidyuk IV, Kalashnikov AE, Gromova TY, Gasanov EV, Safina DR, Zabolotskaya MV, Rudenskaya GN, Kostrov SV (2006) Protein Expr Purif 47:551–561CrossRefGoogle Scholar
  23. 23.
    Zabolotskaya MV, Demidyuk IV, Akimkina TV, Kostrov SV (2004) Protein J 23:483–492CrossRefGoogle Scholar
  24. 24.
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) Nucleic Acids Res 25:4876–4882CrossRefGoogle Scholar
  25. 25.
    Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) J Mol Biol 340:783–795CrossRefGoogle Scholar
  26. 26.
    Schneider TD, Stephens RM (1990) Nucleic Acids Res 18:6097–6100CrossRefGoogle Scholar
  27. 27.
    Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) Genome Res 14:1188–1190CrossRefGoogle Scholar
  28. 28.
    Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, SeattleGoogle Scholar
  29. 29.
    O’Donohue MJ, Beaumont A (1996) J Biol Chem 271:26477–26481CrossRefGoogle Scholar
  30. 30.
    Tang B, Nirasawa S, Kitaoka M, Hayashi K (2002) Biochim Biophys Acta 1596:16–27Google Scholar
  31. 31.
    Tang B, Nirasawa S, Kitaoka M, Hayashi K (2002) Biochem Biophys Res Commun 296:78–84CrossRefGoogle Scholar
  32. 32.
    Mansfeld J, Petermann E, Durrschmidt P, Ulbrich-Hofmann R (2005) Protein Expr Purif 39:219–228CrossRefGoogle Scholar
  33. 33.
    Braun P, Bitter W, Tommassen J (2000) Microbiology 146(Pt 10):2565–2572Google Scholar
  34. 34.
    Marie-Claire C, Roques BP, Beaumont A (1998) J Biol Chem 273:5697–5701CrossRefGoogle Scholar
  35. 35.
    McIver K, Kessler E, Ohman DE (1991) J Bacteriol 173:7781–7789Google Scholar
  36. 36.
    Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL, Studholme DJ, Yeats C, Eddy SR (2004) Nucleic Acids Res 32:D138–141CrossRefGoogle Scholar
  37. 37.
    McIver KS, Kessler E, Ohman DE (2004) Microbiology 150:3969–3977CrossRefGoogle Scholar
  38. 38.
    Yeats C, Rawlings ND, Bateman A (2004) Trends Biochem Sci 29:169–172CrossRefGoogle Scholar
  39. 39.
    Kyostio SR, Cramer CL, Lacy GH (1991) J Bacteriol 173:6537–6546Google Scholar
  40. 40.
    Kwon YT, Lee HH, Rho HM (1993) Gene 125:75–80CrossRefGoogle Scholar
  41. 41.
    Novikova SI, Serkina AV, Konstantinova GE, Khlebalina OI, Chestukhina GG, Shevelev AB (2001) Vopr Med Khim 47:123–131Google Scholar
  42. 42.
    Shinde U, Fu X, Inouye M (1999) J Biol Chem 274:15615–15621CrossRefGoogle Scholar
  43. 43.
    Shinde UP, Liu JJ, Inouye M (1997) Nature 389:520–522CrossRefGoogle Scholar
  44. 44.
    Yasuda Y, Tsukuba T, Okamoto K, Kadowaki T, Yamamoto K (2005) J Biochem (Tokyo) 138:621–630Google Scholar
  45. 45.
    Hase CC, Finkelstein RA (1990) Infect Immun 58:4011–4015Google Scholar
  46. 46.
    Kato JY, Suzuki A, Yamazaki H, Ohnishi Y, Horinouchi S (2002) J Bacteriol 184:6016–6025CrossRefGoogle Scholar
  47. 47.
    Lee SO, Kato J, Nakashima K, Kuroda A, Ikeda T, Takiguchi N, Ohtake H (2002) Biosci Biotechnol Biochem 66:1366–1369CrossRefGoogle Scholar
  48. 48.
    Nirasawa S, Nakajima Y, Zhang ZZ, Yoshida M, Hayashi K (1999) Biochem J 341(Pt 1):25–31CrossRefGoogle Scholar
  49. 49.
    Norqvist A, Norrman B, Wolf-Watz H (1990) Infect Immun 58:3731–3736Google Scholar
  50. 50.
    Oda K, Okayama K, Okutomi K, Shimada M, Sato R, Takahashi S (1996) Biosci Biotechnol Biochem 60:463–467CrossRefGoogle Scholar
  51. 51.
    Chuang YC, Chang TM, Chang MC (1997) Gene 189:163–168CrossRefGoogle Scholar
  52. 52.
    Miyoshi N, Shimizu C, Miyoshi S, Shinoda S (1987) Microbiol Immunol 31:13–25Google Scholar
  53. 53.
    Miyoshi S, Sonoda Y, Wakiyama H, Rahman MM, Tomochika K, Shinoda S, Yamamoto S, Tobe K (2002) Microb Pathog 33:127–134CrossRefGoogle Scholar
  54. 54.
    David VA, Deutch AH, Sloma A, Pawlyk D, Ally A, Durham DR (1992) Gene 112:107–112CrossRefGoogle Scholar
  55. 55.
    Teo JW, Zhang LH, Poh CL (2003) Gene 303:147–156CrossRefGoogle Scholar
  56. 56.
    Behmlander RM, Dworkin M (1994) J Bacteriol 176:6295–6303Google Scholar
  57. 57.
    Matsushita O, Koide T, Kobayashi R, Nagata K, Okabe A (2001) J Biol Chem 276:8761–8770CrossRefGoogle Scholar
  58. 58.
    Toyoshima T, Matsushita O, Minami J, Nishi N, Okabe A, Itano T (2001) Connect Tissue Res 42:281–290CrossRefGoogle Scholar
  59. 59.
    Creemers JW, Siezen RJ, Roebroek AJ, Ayoubi TA, Huylebroeck D, Van de Ven WJ (1993) J Biol Chem 268:21826–21834Google Scholar
  60. 60.
    Gluschankof P, Fuller RS (1994) EMBO J 13:2280–2288Google Scholar
  61. 61.
    Rovere C, Luis J, Lissitzky JC, Basak A, Marvaldi J, Chretien M, Seidah NG (1999) J Biol Chem 274:12461–12467CrossRefGoogle Scholar
  62. 62.
    Creemers JW, Usac EF, Bright NA, Van de Loo JW, Jansen E, Van de Ven WJ, Hutton JC (1996) J Biol Chem 271:25284–25291CrossRefGoogle Scholar
  63. 63.
    Lusson J, Benjannet S, Hamelin J, Savaria D, Chretien M, Seidah NG (1997) Biochem J 326(Pt 3):737–744Google Scholar
  64. 64.
    Taylor NA, Shennan KI, Cutler DF, Docherty K (1997) Biochem J 321(Pt 2):367–373Google Scholar
  65. 65.
    Ueda K, Lipkind GM, Zhou A, Zhu X, Kuznetsov A, Philipson L, Gardner P, Zhang C, Steiner DF (2003) Proc Natl Acad Sci USA 100:5622–5627CrossRefGoogle Scholar
  66. 66.
    Zhou A, Martin S, Lipkind G, LaMendola J, Steiner DF (1998) J Biol Chem 273:11107–11114CrossRefGoogle Scholar
  67. 67.
    Zhu X, Muller L, Mains RE, Lindberg I (1998) J Biol Chem 273:1158–1164CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ilya V. Demidyuk
    • 1
  • Eugene V. Gasanov
    • 1
  • Dina R. Safina
    • 1
  • Sergey V. Kostrov
    • 1
  1. 1.Laboratory of Protein EngineeringInstitute of Molecular Genetics, Russian Academy of SciencesMoscowRussia

Personalised recommendations