The Protein Journal

, Volume 27, Issue 2, pp 123–129 | Cite as

A New Artificial Chaperone for Protein Refolding: Sequential Use of Detergent and Alginate

  • Fariba Khodagholi
  • Bahareh Eftekharzadeh
  • Razieh Yazdanparast


A novel artificial chaperone system using a combination of detergents and alginate was developed to refold three enzymes with totally different structures. Upon dilution of denatured protein in the presence of the capturing agent, complexes of the detergent and non-native protein molecules are formed and thereby the formation of protein aggregates is prevented. The so-called captured protein is unable to refold from the detergent-protein complex states unless a stripping agent is used to gradually remove the detergent molecules. In that respect, we used alginate, a linear copolymer of d-mannuronic acid and l-guluronic acid, to initiate and complete the refolding process. The results indicated that the extent of refolding assistance for the proteins was different due to detergent structure and also the length of hydrophobic portion of each detergent. These observed differences were attributed to the strong electrostatic and hydrophobic interactions among the capturing and stripping agents used in this investigation. Based on this newly developed method, it is expected that the protein refolding operation can be achieved easily, cheaply and efficiently.


Alginate Artificial chaperone Detergent Refolding 

Abbreviations used




Alkaline phosphatase


Bovine serum albumin


Carbonic anhydrase


Cetyltrimethylammonium hydrogen sulfate


Cetyltrimethylammonium bromide


Dodecyl trimethylammonium bromide


Guanidine hydrochloride


p-Nitrophenyl acetate


p-Nitrophenyl phosphate


Sodiumhexadecyl sulfate


Sodiumtetradecyl sulfate


Sodiumdodecyl sulfate


Tetradecyl trimethylammonium bromide


  1. 1.
    Goldberg ME, Ruldoph R, Jaenicke R (1991) Biochemistry 30:2790–2797CrossRefGoogle Scholar
  2. 2.
    Cleland JL, Builder SE, Swartz JR, Winkler M, Chang JY, Wang DIC (1992) Biotechnology 10:1013–1019CrossRefGoogle Scholar
  3. 3.
    Fisher B, Sumner I, Goodenough P (1993) Arch Biochem Biophys 306:183–187CrossRefGoogle Scholar
  4. 4.
    Ou WB, Park YD, Zhou HM (2002) Cell Biol 34:136–147Google Scholar
  5. 5.
    Zancan P, Sola-Penna M (2005) Arch Biochem Biophys 444:52–60CrossRefGoogle Scholar
  6. 6.
    Tayyab S, Ahmad B, Kumar Y, Khan MM (2002) J Biol Macromol 30:17–22CrossRefGoogle Scholar
  7. 7.
    Meng FG, Park YD, Zhou HM (2001) Int J Biochem Cell Biol 33:701–709CrossRefGoogle Scholar
  8. 8.
    Kumar Y, Muzammil S, Tayyeb S (2005) Biochemistry (Tokyo) 138:335–341Google Scholar
  9. 9.
    Tandon S, Horowitz PM (1987) J Biol Chem 262:4486–4491Google Scholar
  10. 10.
    Muzammil S, Kumar Y, Tayyab S (2000) Biochem Biophys Acta 1476:139–148Google Scholar
  11. 11.
    Zhang YX, Zhu YH, Xi W, Liu YL, Zhou HM (2002) Int J Biochem Cell Biol 34:1241–1247CrossRefGoogle Scholar
  12. 12.
    Tian XJ, Song XH, Yan SL, Zhang YX, Zhou HM (2003) J Protein Chem 22:417–422CrossRefGoogle Scholar
  13. 13.
    Karuppiah N, Sharma A (1995) Biochem Biophys Res Commun 211:60–66CrossRefGoogle Scholar
  14. 14.
    Khodarahmi R, Yazdanparast R (2004) Biochem Biophys Acta 1647:175–181Google Scholar
  15. 15.
    Rozema D, Gellman SH (1995) J Am Chem Soc 117:2373–2374CrossRefGoogle Scholar
  16. 16.
    Couthon F, Clottes E, Vial C (1996) Biochem Biophys Res Commun 227:854–860CrossRefGoogle Scholar
  17. 17.
    Rozema R, Gellman SH (1996) J Biol Chem 271:3478–3487CrossRefGoogle Scholar
  18. 18.
    Hanson PE, Gellman SH (1998) Fold Des 3:457–468CrossRefGoogle Scholar
  19. 19.
    Wang J, Lu D, Lin Y, Liu Zh (2005) Biochem Eng J 24:269–277CrossRefGoogle Scholar
  20. 20.
    Sivakama Sundari C, Raman B, Balasubramanian D (1999) FEBS Lett 443:215–219CrossRefGoogle Scholar
  21. 21.
    Machida S, Ogawa S, Xiaohua SH, Takaha T, Fujii K, Hayashi K (2000) FEBS Lett 486:131–135CrossRefGoogle Scholar
  22. 22.
    Wan LSC, Heng PWS (1992) J Microencapsulation 9:309–316CrossRefGoogle Scholar
  23. 23.
    Sugawara S, Imai T, Otagiri M (1994) Pharmaceut Res 11:272–277CrossRefGoogle Scholar
  24. 24.
    Ren B, Gao Y, Lu L, Liu X, Tong Z (2006) Carbohydr Polym 66:263–273CrossRefGoogle Scholar
  25. 25.
    Neumann MG, Schmitt CC, Iamazaki ET (2003) Carbohydr Res 338:1109–1113CrossRefGoogle Scholar
  26. 26.
    Bu H, Kjoniksen AL, Knudsen KD, Nystrom B (2005) Longmuir 21:10923–10930CrossRefGoogle Scholar
  27. 27.
    Khodagholi F, Yazdanparast R (2005) Protein J 24:303–313CrossRefGoogle Scholar
  28. 28.
    Khodarahmi R, Yazdanparast R (2005) Int J Biol Macromol 36:191–197CrossRefGoogle Scholar
  29. 29.
    Yazdanparast R, Khodagholi F (2006) Arch Biochem Biophys 446:11–19CrossRefGoogle Scholar
  30. 30.
    Garen A, Levinthal C (1960) Biochem Biophys Acta 38:470–483CrossRefGoogle Scholar
  31. 31.
    Pocker Y, Stone J (1967) Biochemistry 6:668–675CrossRefGoogle Scholar
  32. 32.
    Bernfeld P (1951) Inter science publ 379Google Scholar
  33. 33.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) J Biol Chem 193:265–275Google Scholar
  34. 34.
    Debye P, Huckel E (1923) Phys Z 24:185–206Google Scholar
  35. 35.
    Glazer AN, Smith EL (1961) J Biol Chem 236:2942–2946Google Scholar
  36. 36.
    Xu GJ, Tsou CL (1963) Acta Biochem Biophys Sin 3:450–458Google Scholar
  37. 37.
    Guex N, Peitsch MC (1997) Electrophoresis 18:2714–2723CrossRefGoogle Scholar
  38. 38.
    Mondal K, Bohidar HB, Roy RP, Gupta MN (2006) Biochem Biophys Acta 5:877–886Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Fariba Khodagholi
    • 1
  • Bahareh Eftekharzadeh
    • 1
  • Razieh Yazdanparast
    • 1
  1. 1.Institute of Biochemistry and BiophysicsThe University of TehranTehranIran

Personalised recommendations