The Protein Journal

, Volume 27, Issue 2, pp 79–87 | Cite as

The Crystal Structure of a Trypsin-like Mutant Chymotrypsin: The Role of Position 226 in the Activity and Specificity of S189D Chymotrypsin

  • Balázs Jelinek
  • Gergely Katona
  • Krisztián Fodor
  • István Venekei
  • László Gráf


The crystal structure of the S189D+A226G rat chymotrypsin-B mutant has been determined at 2.2 Å resolution. This mutant is the most trypsin-like mutant so far in the line of chymotrypsin-to-trypsin conversions, aiming for a more complete understanding of the structural basis of substrate specificity in pancreatic serine proteases. A226G caused significant rearrangements relative to S189D chymotrypsin, allowing an internal conformation of Asp189 which is close to that in trypsin. Serious distortions remain, however, in the activation domain, including zymogen-like features. The pH-profile of activity suggests that the conformation of the S1–site of the mutant is influenced also by the P1 residue of the substrate.


Position 226 Serine protease Substrate specificity Crystal structure 



Amino-4-Methyl Coumarin


Bovine pancreatic trypsin inhibitor


4-(Cyclohexylamino)-1-butanesulfonic acid


Collaborative Computational Project Number 4


2-(Cyclohexylamino)ethanesulfonic acid


Dispersion precision indicator


European Synchrotron Radiation Facility


4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid


2-(N-Morpholino)ethanesulfonic acid


3-(N-Morpholino)propanesulfonic acid


4-Guanidinobenzoic acid 4-methylumbelliferyl ester hydrochloride


Protein data bank


Polyethylene glycol


Soybean trypsin inhibitor


Sodium dodecyl sulfate - polyacrylamide gel electrophoresis


Translational, librational, screw





We are grateful for the beamline staff at the ESRF ID14–2 beamline for their expert assistance. This work was supported by the Hungarian Research Fund OTKA TS049812 and T047154 to L.G., G. K. acknowledges the support from EMBO and CEA.


  1. 1.
    Schechter I, Berger A (1967) Biochem Biophys Res Commun 27:157–162CrossRefGoogle Scholar
  2. 2.
    Gráf L, Jancsó A, Szilágyi L, Hegyi Gy, Pintér K, Náray-Szabó G, Hepp J, Medzihradszky K, Rutter WJ (1988) Proc Natl Acad Sci USA 85:4961–4965CrossRefGoogle Scholar
  3. 3.
    Hedstrom L, Szilágyi L, Rutter WJ (1992) Science 255:1249–1253CrossRefGoogle Scholar
  4. 4.
    Hedstrom L, Perona JJ, Rutter WJ (1994) Biochemistry 33:8757–8763CrossRefGoogle Scholar
  5. 5.
    Hedstrom L, Farr Jones S, Kettner CA, Rutter WJ (1994) Biochemistry 33:8764–8769CrossRefGoogle Scholar
  6. 6.
    Gráf L (1995) In: Zwilling R (ed) Natural sciences and human thought. Springer-Verlag, Berlin, Heidelberg, pp 139–148Google Scholar
  7. 7.
    Steitz TA, Henderson R, Blow DM (1969) J Mol Biol 46:337–348CrossRefGoogle Scholar
  8. 8.
    Venekei I, Szilágyi L, Gráf L, Rutter WJ (1996) FEBS Lett 379:143–147CrossRefGoogle Scholar
  9. 9.
    Craik CS, Largman C, Fletcher T, Roczniak S, Barr PJ, Fletterick RJ, Rutter WJ (1985) Science 228:291–297CrossRefGoogle Scholar
  10. 10.
    Wilke ME, Higaki JN, Craik CS, Fletterick RJ (1991) J Mol Biol 219:525–532CrossRefGoogle Scholar
  11. 11.
    Jelinek B, Antal J, Venekei I, Gráf L (2004) Protein Eng Des Sel 17:127–131CrossRefGoogle Scholar
  12. 12.
    Jameson GW, Adams DV, Kyle WS, Elmore DT (1973) Biochem J 131:107–117Google Scholar
  13. 13.
    CCP 4 (1994) Acta Cryst D 50:760–763Google Scholar
  14. 14.
    Navaza J (2001) Acta Crystallogr D Biol Crystallogr 57:1367–1372CrossRefGoogle Scholar
  15. 15.
    Szabó E, Venekei I, Böcskei Zs, Náray-Szabó G, Gráf L (2003) J Mol Biol 331(5):1121–1130CrossRefGoogle Scholar
  16. 16.
    Terwilliger TC (2000) Acta Cryst D56:965–972Google Scholar
  17. 17.
    Emsley P, Cowtan K (2004) Acta Cryst D60:2126–2132Google Scholar
  18. 18.
    Murshudov GN, Vagin AA, Dodson EJ (1997) Acta Cryst D53:240–255Google Scholar
  19. 19.
    Hooft RW, Vriend G, Sander C, Abola EE (1996) Nature 381:272CrossRefGoogle Scholar
  20. 20.
    Laskowski RA, MAcArtur MW, Moss DS, Thornton JM (1993) J Appl Crystallog 26:283–291CrossRefGoogle Scholar
  21. 21.
    Luzzati PV (1952) Acta Cryst 5:802–810CrossRefGoogle Scholar
  22. 22.
    Cruickshank DWJ (1999) Acta Cryst D55:583–601Google Scholar
  23. 23.
    Lesk AM (1991) Protein architecture: a practical guide. IRL Press, OxfordGoogle Scholar
  24. 24.
    Madsen D, Kleywegt GJ (2002) J Appl Crystallog 35:137–139CrossRefGoogle Scholar
  25. 25.
    Marquart M, Walter J, Deisenhofer J, Bode W, Huber R (1983) Acta Crystallogr Sect B v39:480 CrossRefGoogle Scholar
  26. 26.
    Brady K, Wei AZ, Ringe D, Abeles RH (1990) Biochemistry v29:7600–7607CrossRefGoogle Scholar
  27. 27.
    Segel IH (1993) Enzyme Kinetics: Behavior and analysis of rapid equilibrium and steady-state enzyme systems, Wiley Classics Library EditionGoogle Scholar
  28. 28.
    Dementiev A, Dobó J, Gettins PGW (2006) J Biol Chem 281(6):3452–3457CrossRefGoogle Scholar
  29. 29.
    Katz B, Kossiakoff A (1986) J Biol Chem 261(33):15480-15485Google Scholar
  30. 30.
    Fodor K, Harmat V, Neutze R, Szilágyi L, Gráf L, Katona G (2006) Biochemistry 21;45(7):2114–2121 CrossRefGoogle Scholar
  31. 31.
    Radisky ES, Lee JM, Lu CJ, Koshland DE Jr (2006) Proc Natl Acad Sci U S A 103(18):6835–6840CrossRefGoogle Scholar
  32. 32.
    Fuhrmann CN, Daugherty MD, Agard DA (2006) J Am Chem Soc 128(28):9086–9102 CrossRefGoogle Scholar
  33. 33.
    Liu B, Schofield CJ, Wilmouth RC (2006) J Biol Chem 281(33):24024–24035CrossRefGoogle Scholar
  34. 34.
    Fersht AR (1972) J Mol Biol 64(2):497–509CrossRefGoogle Scholar
  35. 35.
    Verheyden G, Matrai J, Volckaert G, Engelborghs Y (2004) Prot Sci 13:2533–2540CrossRefGoogle Scholar
  36. 36.
    Szabó E, Böcskei Zs, Náray-Szabó G, Gráf L (1999) Eur J Biochem 263(1):20–26CrossRefGoogle Scholar
  37. 37.
    Bode W, Schwager P, Huber R (1978) J Mol Biol 118:99–112CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Balázs Jelinek
    • 1
  • Gergely Katona
    • 2
  • Krisztián Fodor
    • 3
  • István Venekei
    • 1
  • László Gráf
    • 1
    • 3
  1. 1.Department of BiochemistryEötvös Loránd UniversityBudapestHungary
  2. 2.Institut de Biologie StructuraleUMR 5075, CEA/CNRS/UJFGrenoble Cedex 1France
  3. 3.Biotechnology Research Group Hungarian Academy of SciencesBudapestHungary

Personalised recommendations