Skip to main content
Log in

HbS-Savaria: The Anti-polymerization Effect of a Single Mutation in Human α-chains

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Recombinant α-Savaria globin (αS49R) was assembled with βS chains by the alloplex intermediate pathway to generate tetrameric rHbS-Sarvaria (α S49R2 β E6V2 ) that exhibited normal O2 affinity and co-operatively at pH 7.4. Allosteric effectors, 2,3-DPG, L35, and NaCl increased O2 affinity by 15%. Bohr effects were similar for rHbS-Savaria and HbS (0.38 ± 0.025 vs. 0.46 ± 0.03, respectively). The CSAT of HbS increased from 16.7 ± 0.8 to 27.0 ± 1.0 g/dL. Co-polymerization demonstrated inhibition predominantly by the Cis-dimer. Molecular modeling indicated that the positive charge at α-49 generated a strong anion-binding site and reduced flexibility of the CD-region by restricting movement in the E and F helices. The molecular distance between Arg-49 and Asn-78 in the neighboring double strand decreased, and electrostatic repulsion between the inter-double strands increased, resulting in inhibition of polymerization. The Savaria mutation may be useful for the design of super-inhibitory α-chains and gene therapy of sickle cell anemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

βS :

Beta globin with HbS mutation

CSAT :

Concentration of deoxyHb in equilibrium with the polymer phase

2,3-DPG:

2,3-diphosphoglycerate

ESI-MS:

Electrospray ionization mass spectroscopy

HbS:

Hemoglobin S, sickle hemoglobin

IEF:

Isoelectric focusing

IHP:

Inositol hexaphosphate

L35:

2-[4-(3,5-dichlorophenylureido)phenoxy]-2-methylpropionic acid

LCR:

Locus control region

MEL:

Mouse erythroleukemia cells

p50:

The partial pressure of oxygen at half-saturation for Hb

RHbS-Savaria :

Recombinant HbS-Savaria

RP-HPLC:

Reverse phase high performance liquid chromatography

TFA:

Trifluoroacetic acid

References

  1. Ingram VM (1956) Nature 178:792–794

    Article  CAS  Google Scholar 

  2. Padlan EA, Love WE (1985b) J Biol Chem 260:8280–8291

    CAS  Google Scholar 

  3. Nagel RL, Bookchin RM (1975) In: Levere RD (ed) Sickle cell anemia and other hemoglobinopathies. Academic Press, New York

  4. Manning JM (1991) Adv Enzymol Relat Areas Mol Biol 64:55–91

    Article  CAS  Google Scholar 

  5. Dykes GW, Crepeau RH, Edelstein SJ (1979) J Mol Biol 130:451–472

    Article  CAS  Google Scholar 

  6. Nagel RL, Johnson J, Bookchin RM, Garel MC, Rosa J, Schiliro G, Wajcman H, Labie D, Moo-Penn W, Castro O (1980) Nature 283:832–834

    Article  CAS  Google Scholar 

  7. Benesch RE, Yung S, Benesch R, Mack J, Schneider RG (1976) Nature 260:219–221

    Article  CAS  Google Scholar 

  8. Benesch RE, Kwong S, Benesch R, Edalji R (1977) Nature 269:772–775

    Article  CAS  Google Scholar 

  9. Himanen JP, Schneider K, Chait B, Manning JM (1995) J Biol Chem 270:13885–13891

    Article  CAS  Google Scholar 

  10. Adachi K, Reddy LR, Reddy KS, Surrey S (1995) Protein Sci 4:1272–1278

    Article  CAS  Google Scholar 

  11. Adachi K, Konitzer P, Surrey S (1994) J Biol Chem 269:9562–9567

    CAS  Google Scholar 

  12. Witkowska HE, Lubin BH, Beuzard Y, Baruchel S, Esseltine DW, Vichinsky EP, Kleman KM, Bardakdjian-Michau J, Pinkoski L, Cahn S et al (1991) N Eng J Med 325:1150–1154

    Article  CAS  Google Scholar 

  13. Reddy LR, Reddy KS, Surrey S, Adachi K (1997) Biochemistry 36:15992–15998

    Article  CAS  Google Scholar 

  14. Ho C, Willis BF, Shen TJ, Dazhen NT, Sun DP, Tam MF, Suzuka SM, Fabry ME, Nagel RL (1996) J Mol Biol 263:475–485

    Article  CAS  Google Scholar 

  15. Himanen JP, Popowicz AM, Manning JM (1997) Blood 89:4196–4203

    CAS  Google Scholar 

  16. Li X, Mirza UA, Chait BT, Manning JM (1997) Blood 90:4620–4627

    CAS  Google Scholar 

  17. Rao MJ, Iyer KS, Acharya AS (1995) J Biol Chem 270:19250–19255

    Article  CAS  Google Scholar 

  18. Acharya AS, Sussman LG, Seetharam R (1985) J Protein Chem 4:215–225

    Article  CAS  Google Scholar 

  19. Watowich SJ, Gross LJ, Josephs R (1993) J Struct Biol 111:161–179

    Article  CAS  Google Scholar 

  20. Cretegny I, Edelstein SJ (1993) J Mol Biol 230:733–738

    Article  CAS  Google Scholar 

  21. Leboulch P, Huang GM, Humphries RK, Oh YH, Eaves CJ, Tuan DY, London IM (1994) EMBO J 13:3065–3076

    CAS  Google Scholar 

  22. McCune SL, Reilly MP, Chomo MJ, Asakura T, Townes TM (1994) Proc Natl Acad Sci USA 91:9852–9856

    Article  CAS  Google Scholar 

  23. Pawliuk R, Westerman KA, Fabry ME, Payen E, Tighe R, Bouhassira EE, Acharya SA, Ellis J, London IM, Eaves CJ, Humphries RK, Beuzard Y, Nagel RL, Leboulch P (2001) Science 294:2368–2371

    Article  CAS  Google Scholar 

  24. Sivaram MV, Sudha R, Roy RP (2001) J Biol Chem 276:18209–18215

    Article  CAS  Google Scholar 

  25. Padlan EA, Love WE (1985a) J Biol Chem 260:8272–8279

    CAS  Google Scholar 

  26. Crepeau RH, Edelstein SJ, Szalay M, Benesch RE, Benesch R, Kwong S, Edalji R (1981) Proc Natl Acad Sci USA 78:1406–1410

    Article  CAS  Google Scholar 

  27. Szelenyi JG, Horanyi M, Foldi J, Hudacsek J, Istvan L, Hollan SR (1980) Hemoglobin 4:27–38

    CAS  Google Scholar 

  28. Forrester WC, Novak U, Gelinas R, Groudine M (1989) Proc Natl Acad Sci USA 86:5439–5443

    Article  CAS  Google Scholar 

  29. Roy RP, Acharya AS (1994) Methods Enzymol 231:194–215

    Article  CAS  Google Scholar 

  30. Benesch RE, Edalji R, Kwong S, Benesch R (1978) Anal Biochem 89:162–173

    Article  CAS  Google Scholar 

  31. Fermi G, Perutz MF, Shaanan B, Fourme R (1984) J Mol Biol 175:159–174

    Article  CAS  Google Scholar 

  32. Vried G (1990) J Mol Graphics 8:52–56

    Article  Google Scholar 

  33. Rhoda MD, Blouquit Y, Caburi-Martin J, Monplaisir N, Galacteros F, Garel MC, Rosa J (1984) Biochim Biophys Acta 786:62–66

    CAS  Google Scholar 

  34. Benesch RE, Kwong S, Edalji R, Benesch R (1979) J Biol Chem 254:8169–8172

    CAS  Google Scholar 

  35. Rhoda MD, Martin J, Blouquit Y, Garel MC, Edelstein SJ, Rosa J (1983) Biochem Biophys Res Commun 111:8–13

    Article  CAS  Google Scholar 

  36. Roy RP, Nagel RL, Acharya AS (1993) Biochemistry 268:16406–16412

    CAS  Google Scholar 

  37. Nacharaju P, Roy RP, White SP, Nagel RL, Acharya AS (1997) J Biol Chem 272:27869–27876

    Article  CAS  Google Scholar 

  38. Rao MJ, Malavalli A, Manjula BN, Kumar R, Prabhakaran M, Sun DP, Ho NT, Ho C, Nagel RL, Acharya AS (2000) J Mol Biol 300:1389–1406

    Article  CAS  Google Scholar 

  39. Srinivasulu S, Malavalli A, Prabhakaran M, Nagel RL, Acharya AS (1999) Protein Eng 12:1105–1111

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by HL68962, HL55435, HL70994, and HL58512

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald L. Nagel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srinivasulu, S., Acharya, A.S., Prabhakaran, M. et al. HbS-Savaria: The Anti-polymerization Effect of a Single Mutation in Human α-chains . Protein J 26, 523–532 (2007). https://doi.org/10.1007/s10930-007-9089-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-007-9089-9

Keywords

Navigation