Skip to main content
Log in

Relevance of phenylalanine 216 in the affinity of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase for Mn(II)

  • Published:
The Protein Journal Aims and scope Submit manuscript

Saccharomyces cerevisiae phosphoenolpyruvate (PEP) carboxykinase catalyzes the reversible formation of oxaloacetate and adenosine triphosphate from PEP, adenosine diphosphate and carbon dioxide, and uses Mn2+ as the activating metal ion. Comparison with the crystalline structure of homologous Escherichia coli PEP carboxykinase [Tari et al. (1997) Nature Struct. Biol. 4, 990–994] shows that Lys213 is one of the ligands to Mn2+ at the enzyme active site. Coordination of Mn2+ to a lysyl residue is not common and suggests a low pK a value for the ε-NH2 group of Lys213. In this work, we evaluate the role of neighboring Phe216 in contributing to provide a low polarity microenvironment suitable to keep the ε-NH2 of Lys213 in the unprotonated form. Mutation Phe216Tyr shows that the introduction of a hydroxyl group in the lateral chain of the residue produces a substantial loss in the enzyme affinity for Mn2+, suggesting an increase of the pK a of Lys213. In agreement with this interpretation, theoretical calculations indicate an alkaline shift of 2.8 pH units in the pK a of the ε-amino group of Lys213 upon Phe216Tyr mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Abbreviations

CD:

circular dichroism spectroscopy

HEPES:

N-(2-hydroxyethyl)piperazine-N′-2(ethanesulfonic acid)

HPLC:

high-performance liquid chromatography

MD:

molecular dynamics

MOPS:

3-(N-morpholino)propanesulfonic acid

OAA:

oxaloacetic acid

PEP:

phosphoenolpyruvate

SDS-PAGE:

sodium dodecylsulfate-polyacrylamide gel electrophoresis

References

  • Cotelesage J.J., Prasad L., Zeikus J.G., Laivenieks M., Delbaere L.T. (2005) Int. J. Biochem. Cell Biol. 37:1829–1837

    Article  CAS  Google Scholar 

  • Dunten P., Belunis C., Crowther R., Hollfelder K., Kammlott U., Levin W., Michel H., Ramsey G.B., Swain A., Weber D., Wertheimer S.J. (2002) J. Mol. Biol. 316:257–264

    Article  CAS  Google Scholar 

  • González-Nilo F.D., Krautwurst H., Yévenes A., Cardemil E., Cachau R. (2002) Biochim. Biophys. Acta 1599:65–71

    Google Scholar 

  • Holyoak T.,Sullivan S.M., Nowak T. (2006) Biochemistry 45:8254–8263

    Article  CAS  Google Scholar 

  • Jacob L.R., Vollert H., Rose M., Entian K.D., Bartunik L.J., Bartunik H. D. (1992) J. Chromatogr. 625:47–54

    Article  CAS  Google Scholar 

  • Krautwurst H., Encinas M.V., Marcus F., Latshaw S.P., Kemp R.G., Frey P.A., Cardemil E. (1995). Biochemistry 34:6382–6388

    Article  CAS  Google Scholar 

  • Krautwurst H., Bazaes S., González F.D., Jabalquinto A.M., Frey P.A., Cardemil E. (1998) Biochemistry 37:6295–6302

    Article  CAS  Google Scholar 

  • Krautwurst H., Roschzttardtz H., Bazaes S., Gonzalez-Nilo F.D., Nowak T., Cardemil E. (2002) Biochemistry 41:12763–12770

    Article  CAS  Google Scholar 

  • Lee M.H., Hebda C.A., Nowak T. (1981) J. Biol. Chem. 256:12793–12801

    CAS  Google Scholar 

  • Lee F.S., Chu Z.T., Warshel A. (1993) J. Comput. Chem. 14:161–185

    Article  CAS  Google Scholar 

  • Llanos L., Briones R., Yévenes A., González-Nilo F.D., Frey P.A., Cardemil E. (2001). FEBS Letters 493:1–5

    Article  CAS  Google Scholar 

  • Martel, A.E., and Smith, R.M. (1998). NIST standard references database 46, version 5.0

  • Matte A, Tari L.W., Goldie H., Delbaere L.T.J. (1997) J. Biol. Chem. 272:8105–8108

    Article  CAS  Google Scholar 

  • Müller M., Müller H., Holzer H. (1981) J. Biol. Chem. 256:723–727

    Google Scholar 

  • Perella F.W. (1988) Anal. Biochem. 174:437–447

    Article  Google Scholar 

  • Sham Y.Y., Chu Z.T., Warshel A. (1997) J. Phys. Chem. 101:4458–4472

    CAS  Google Scholar 

  • Sugahara M., Ohshima N., Ukita Y., Sugahara M., Kunishima N. (2005) Acta Cryst. D61:1500–1507

    CAS  Google Scholar 

  • Tari L.W., Matte A., Goldie H., Delbaere L.T.J. (1997) Nature Struct. Biol. 4:990–994

    Article  CAS  Google Scholar 

  • Trapani S., Linss J., Goldenberg S., Fische H., Craievich A.F., Oliva G. (2001) J. Mol. Biol. 313:1059–1072

    Article  CAS  Google Scholar 

  • Utter M.F., Kolenbrander H.M. (1972) The Enzymes. 3rd, Academic Press, New York, 6:117–168

    Google Scholar 

  • Yévenes A., Espinoza R., Rivas-Pardo J.A., Villarreal J.M., González-Nilo F.D., Cardemil E. (2006) Biochimie 88:663–672

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants FONDECYT 2010041 (AY) and 1030760 (EC). CD experiments were carried out at the Biophysics Instrumentation Facility of the University of Wisconsin-Madison, which was established by funding from NSF (BIR-9512577), NIH (S10RR3790), and the University of Wisconsin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Cardemil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yévenes, A., González-Nilo, F. & Cardemil, E. Relevance of phenylalanine 216 in the affinity of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase for Mn(II). Protein J 26, 135–141 (2007). https://doi.org/10.1007/s10930-006-9054-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-006-9054-z

Keywords

Navigation