The Protein Journal

, Volume 26, Issue 2, pp 125–133 | Cite as

Use of 5′-[p-(Fluorosulfonyl)benzoyl] Guanosine as an Affinity Probe for the Guanine Nucleotide-Binding Site of Transducin

  • Matthias Jaffé
  • José Bubis


Transducin (T) mediates vision in retinal rods by transmitting light signals detected by rhodopsin to a cGMP phosphodiesterase. The flow of information relies on a subunit association/dissociation cycle of T regulated by a guanine nucleotide exchange/hydrolysis reaction. 5′-[p-(Fluorosulfonyl)benzoyl] guanosine (FSBG) was synthesized and examined here as an affinity label for the guanine nucleotide binding site of T. Although the relative binding affinity of FSBG to T was much lower than for GTP and β,γ-imido-guanosine 5′-triphosphate (GMPPNP), the incorporation of FSBG to T inhibited its light-dependent [3H] GMPPNP binding activity in a concentration dependent manner. Additionally, GDP, GTP and GTP analogs hindered the binding of [3H] FSBG to T. These results demonstrated that FSBG could be used to specifically modify the active site of T. In addition, FSBG was not capable of dissociating T from T:photoactivated rhodopsin complexes, suggesting that in this case FSBG is acting as a GDP analog.


Affinity labeling FSBG G-protein-coupled signaling transducin visual process 



5′-[p-(fluorosulfonyl)benzoyl] guanosine


β,γ-imido-guanosine 5′-triphosphate


G-protein-coupled receptor


guanosine 5′-O-(3-thiotriphosphate)




photoactivated rhodopsin or metarhodopsin II


rod outer segments


sodium dodecyl sulfate


polyacrylamide gel electrophoresis in the presence of SDS




transducin α-subunit


transducin βγ-complex


transducin-photoactivated rhodopsin complex



This work was supported by grants from FONACIT, N° S1-2000000514, Caracas, Venezuela, and from Decanato de Investigación y Desarrollo, N° S1-CB-241, Universidad Simón Bolívar, Caracas, Venezuela. We would like to thank Dr. Graciela L. Uzcanga for helping with the illustrations.


  1. Annamalai A. E., Colman R. F. (1981). J. Biol. Chem. 256, 276–283Google Scholar
  2. Baylor D. A. (1996). Proc. Natl. Acad. Sci. U.S.A. 93, 560–565CrossRefGoogle Scholar
  3. Bell M. W., Alvarez K., Ghalayini A. J. (1999) J. Neurochem. 74, 2331–2340CrossRefGoogle Scholar
  4. Bell M. W., Desai N., Guo X. X., Ghalayini A. J. (2000) J. Neurochem. 75, 2006–2019CrossRefGoogle Scholar
  5. Bradford M. M. (1976). Anal. Biochem. 72, 248–254CrossRefGoogle Scholar
  6. Bubis J. (1995). Biol. Res. 28, 291–299CrossRefGoogle Scholar
  7. Bubis J. (1998). Biol. Res. 31, 59–71CrossRefGoogle Scholar
  8. Bubis J., Khorana H. G. (1990). J. Biol. Chem. 265, 12995–12999Google Scholar
  9. Bubis J., Millan E. J., Martinez R. (1993). Biol. Res. 26, 177–188Google Scholar
  10. Bubis J., Ortiz J. O., Möller C. (2001). Arch. Biochem. Biophys. 395, 146–157CrossRefGoogle Scholar
  11. Bubis J., Ortiz J. O., Möller C., Millán E. J. (1994). J. Protein Chem. 13, 473–474Google Scholar
  12. Bubis J., Ortiz J. O., Möller C., Millán E. J. (1995). In: Atassi M. Z., Appella E. (eds) Methods in Protein Structure Analysis. Plenum Press, New York, pp. 227–250Google Scholar
  13. Burns M. E., Arshavsky V. Y. (2005). Neuron 48, 387–401CrossRefGoogle Scholar
  14. Chen F., Lee R. (1997). Biochem. Biophys. Res. Commun. 233, 370–374CrossRefGoogle Scholar
  15. Clerc A., Catty P., Bennett N. (1992). J. Biol. Chem. 267, 19948–19953Google Scholar
  16. Dhanasekaran N., Wessling-Resnick M., Kelleher D. J., Johnson G. L., Ruoho A. E. (1988). J. Biol. Chem. 263, 17942–17950Google Scholar
  17. Frey S. E., Hingorani V. N., Su-Tsai S.-M., Ho Y.-K. (1988). Biochemistry 27, 8209–8218CrossRefGoogle Scholar
  18. Glazer A. N., DeLange R. J., Sigman D. S. (1975). In: Work T. S., Work E. (eds) Chemical Modification of Proteins. Selected Methods and Analytical Procedures, Elsevier Biomedical, Amsterdam, pp. 135–179Google Scholar
  19. Hargrave P. A. (2001). Invest. Ophthalmol. Vis. Sci. 42, 3–9Google Scholar
  20. He W., Cowan C. W., Wensel T. G. (1998). Neuron 20, 95–102CrossRefGoogle Scholar
  21. Hingorani V. N., Ho Y.-K. (1987). Biochemistry 26, 1633–1639CrossRefGoogle Scholar
  22. Hingorani V. N., Tobias D. T., Henderson J. T., Ho Y.-K. (1988). J. Biol. Chem. 263, 6916–6926Google Scholar
  23. Hingorani V. N., Ho Chang L.-F., Ho Y.-K. (1989). Biochemistry 28, 7424–7432CrossRefGoogle Scholar
  24. Ho Y.-K., Fung B. K.-K. (1984). J. Biol. Chem. 259, 6694–6699Google Scholar
  25. Hofmann K. P., Reichert J. (1985). J. Biol. Chem. 260, 7990–7995Google Scholar
  26. Hu G., Wensel T. G. (2002). Proc. Natl. Acad. Sci. U. S.A. 99, 9755–9760CrossRefGoogle Scholar
  27. Jadus M., Hanson R. W., Colman R. F. (1981). Biochem. Biophys. Res. Commun. 101, 884–892CrossRefGoogle Scholar
  28. Jaffé M., Bubis J. (2002). J. Protein Chem. 21, 339–348CrossRefGoogle Scholar
  29. Kelleher D. J., Dudycz L. W., Wright G. E., Johnson G. L. (1986). Mol. Pharmacol. 30, 603–608Google Scholar
  30. Kohnken R. E., McConnell D. G. (1985). Biochemistry 24, 3803–3809CrossRefGoogle Scholar
  31. Kosoy A., Moller C., Perdomo D., Bubis J. (2003). Biol. Res. 36, 367–379CrossRefGoogle Scholar
  32. Kosoy A., Moller C., Perdomo D., Bubis J. (2004). J. Biochem. Mol. Biol. 37, 260–267Google Scholar
  33. Laemmli U. K. (1970). Nature 227, 680–685CrossRefGoogle Scholar
  34. Lamb T. D. (1996). Proc. Natl. Acad. Sci. U. S.A. 93, 566–570CrossRefGoogle Scholar
  35. Lambright D. G., Noel J. P., Hamm. H. E., Sigler P. B. (1994). Nature 369, 621–628CrossRefGoogle Scholar
  36. Lambright D. G., Sondek J., Bohm A., Skiba N. P., Hamm. H. E., Sigler P. B. (1996). Nature 379, 311–319CrossRefGoogle Scholar
  37. Makino E. R., Handy J. W., Li T., Arshavsky V. Y. (1999). Proc. Natl. Acad. Sci. U.S.A. 96, 1947–1952CrossRefGoogle Scholar
  38. Medina R., Perdomo D., Bubis J. (2004). J. Biol. Chem. 279, 39565–39573CrossRefGoogle Scholar
  39. Millán E. J, Bubis J. (2002). J. Protein Chem. 21, 1–8CrossRefGoogle Scholar
  40. Noel J. P., Hamm H. E., Sigler P. B. (1993). Nature 366, 654–663CrossRefGoogle Scholar
  41. Ohmi N., Hoshino M., Tagaya M., Fukui T., Kawakita M., Hattori S. (1988). J. Biol. Chem. 263, 14261–14266Google Scholar
  42. Ortiz J. O., Bubis J. (2001). Arch. Biochem. Biophys. 387, 233–242CrossRefGoogle Scholar
  43. Pal P. K., Colman R. F. (1979). Biochemistry 18, 838–845CrossRefGoogle Scholar
  44. Pal P. K., Reischer R. J., Wechter W. J., Colman R. F. (1978). J. Biol. Chem. 253, 6644–6646Google Scholar
  45. Paulos R. L., Price P. A. (1974). J. Biol. Chem. 249, 1453–1457Google Scholar
  46. Pugh E. N. Jr, Nikonov S., Lamb T. D. (1999). Curr. Opin. Neurobiol. 9, 410–418CrossRefGoogle Scholar
  47. Reichert J., Hofmann K. P. (1984). FEBS Lett. 168, 121–124CrossRefGoogle Scholar
  48. Ridge K. D., Abdulaev N. G., Sousa M., Palczewski K. (2003). Trends. Biochem. Sci. 28, 479–487CrossRefGoogle Scholar
  49. Shichi H., Somers R. L. (1978). J. Biol. Chem. 253, 7040–7046Google Scholar
  50. Sondek J., Lambright D. G., Noel J. P., Hamm H. E., Sigler P. B. (1994). Nature 372, 276–279CrossRefGoogle Scholar
  51. Sondek J., Bohm. A., Lambright D. G., Hamm H. E., Sigler P. B. (1996). Nature 379, 369–374CrossRefGoogle Scholar
  52. Sprang S. R. (1997). Annu. Rev. Biochem. 66, 639–678CrossRefGoogle Scholar
  53. Takemoto D. J., Haley B. E., Hansen J., Pinkett D., Takemoto L. J. (1981). Biochem. Biophys. Res. Commun. 102, 341–347CrossRefGoogle Scholar
  54. Takemoto D. J., Takemoto L. J. (1985). Biochem. J. 225, 227–232Google Scholar
  55. Togashi C. T., Reisler E. (1982). J. Biol. Chem. 257, 10112–10118Google Scholar
  56. Tomich J. M., Marti C., olman R. F. (1981). Biochemistry 20, 6711–6720CrossRefGoogle Scholar
  57. Towbin H., Staehlin T., Gordon J. (1979). Proc. Natl. Acad. Sci. U.S.A. 76, 4350–4354CrossRefGoogle Scholar
  58. Wald G., Brown P. (1953–1954). J. Gen. Physiol. 37. 189–200Google Scholar
  59. Wilkins J. F., Bitensky M. W., Willardson B. M. (1996). J. Biol. Chem. 271, 19232–19237CrossRefGoogle Scholar
  60. Yamanaka G., Eckstein F., Stryer L. (1985). Biochemistry 24, 8094–8101CrossRefGoogle Scholar
  61. Yamanaka G., Eckstein F., Stryer L. (1986). Biochemistry 25, 6149–6153CrossRefGoogle Scholar
  62. Yang C.-S., Skiba N. P., Mazzoni M. R., Hamm H. E. (1999) J. Biol. Chem. 274, 2379–2385CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Departamento de QuímicaUniversidad Simón BolívarCaracasVenezuela
  2. 2.Departamento de Biología CelularUniversidad Simón BolívarCaracasVenezuela

Personalised recommendations